
Hamburg University of Technology
Vision Systems

Prof. Dr.-Ing. R.-R. Grigat

A Graph Based Path Planning
Approach for the RoboCup Standard

Platform League

Research Project

Felix Warmuth

April 2, 2019

Statutory Declaration

I, Felix Warmuth, born on 24.04.1990 in Eindhoven, the Netherlands, hereby declare on
oath that I compiled this research project, submitted to Hamburg University of Technol-
ogy (TUHH), on my own. I have used only the declared sources and auxiliaries.

Place and Date Signature

i

Contents

List of Figures iii

List of Tables 1

List of Algorithms 1

1 Introduction 2
1.1 Motivation . 3
1.2 Scope . 4
1.3 Path Planning Concept and Terminology 5
1.4 Existing approaches . 9

1.4.1 Probabilistic Road Maps . 9
1.4.2 Rapidly Exploring Random Trees 10
1.4.3 Visibility Graph . 12
1.4.4 Potential Field . 13

1.5 Requirements . 14

2 Prerequisites 17
2.1 Calculation of Tangents . 17
2.2 A-Star Graph Search (A*) . 20

2.2.1 Heuristic control . 20

3 Algorithm 22
3.1 Basic Concept . 22
3.2 Data-types . 27

3.2.1 Input-Vector . 27
3.2.2 Graph . 28
3.2.3 Search Algorithm . 28
3.2.4 Output, the trajectory . 29

3.3 Design . 29
3.3.1 Initialization . 29

ii

3.3.2 The Search Loop . 33
3.3.3 Graph - Exploration of neighbors 36
3.3.4 Visibility check . 40

3.4 Correctness . 42
3.4.1 Initialization . 42
3.4.2 The Search, modified A-Star 42
3.4.3 The Graph . 43

3.5 Complexity . 43

4 Implementation 45
List of Code Snippets . 45
4.1 Development Framework and Visualization 45

4.1.1 Pygame and Matplotlib . 46
4.1.2 Networkx as a graph visualizer 46

4.2 Python Prototype Code Snippets . 46
4.2.1 cost(u: Vertex, v: Vertex, edge_type: EdgeType) 46
4.2.2 connected(u: Vertex, v: Vertex) 47

5 Evaluation 50
5.1 Comparison . 51
5.2 Testing . 54

6 Conclusion and Outlook 55
6.1 Further Work . 56

Bibliography 57

List of Figures

1.1 NAO . 2
1.2 Top4 Foul Statistic 2018 . 3
1.3 Global- and relative coordinate system 6
1.4 Work space example . 7
1.5 Configuration space example . 7
1.6 Example situation with 4 obstacles. 9

iii

1.7 Probabilistic Road Map example . 10
1.8 Visibility graph example. 12
1.9 Potential field, attractive and repulsive part 15
1.10 Detour example, Potential Field Approach 16

2.1 Tangent lines, point to circle. 17
2.2 Tangents line - two circles with same radii 18
2.3 Construction of tangents line - two circles with same radii 18
2.4 Construction outer tangents, different radius 19
2.5 Construction inner tangents, same radius 19

3.1 Basic Path Planning Problem. 22
3.2 Field Visualization of State 1 . 23
3.3 Graph Structure State 1 . 23
3.4 Field Visualization - State 2 . 24
3.5 Graph Structure - State 2 . 24
3.6 Field Visualization - State 3 . 25
3.7 Graph Structure - State 3 . 25
3.8 Full Sized Field Visualization - Final State 26
3.9 Visualization of Final Path with a rect as an obstacle. 27
3.10 Enlarged View of previous figure. 27
3.11 edges data type example . 28
3.12 Example, Obstacle overlap, blocked arcs. 30
3.13 Shift of obstacle. 31
3.14 Example of start vertex inside of blocked area. 32
3.15 Destination inside of blocked arc, deletion approach. 32
3.16 Destination inside of blocked arc, shift approach. 33
3.17 Complex environment. 36
3.18 Intermediate vertex, it’s neighbors and tangent edges. 37
3.19 Multi visiting an obstacle, blocked arcs, candidate and pair vertices. . . 40
3.20 Toughing edges are considered as visible. 41
3.21 Distribution of needed iterations. 44

4.1 List of angle placement scenarios regarding a blocked arc. 48

5.1 Reference path, proposed approach . 50
5.2 PRM, final path, showing detour . 51
5.3 Potential field, 3D, reference situation 52
5.4 Potential field, 2D, reference situation with contour lines 53

iv

List of Tables

3.1 Observed number of function calls, mean over all 2500 runs. 44

5.1 Distance compartment, direct vs proposed approach. 54

List of Algorithms

1 Rapid Exploring Random Trees . 11
2 Sample A* pseudo code . 21
3 Plan the path, modified A-Star . 34
4 The Cost Function . 35
5 SkipIfPossible, Can the pair vertex be added. 35
6 Get neighbors of vertex . 38
7 Populate obstacle . 39

1

Chapter 1: Introduction

This work is part of the research activity of team HULKs (Hamburg Ultra Legendary
Kickers), the RoboCup Standard Platform League (SPL) team at the Technical Univer-
sity of Hamburg (TUHH). The subject is the result of analyzing the experience during
SPL competitions regarding path planning. It proposes a specialized approach to solve
path planning issues and improve the trajectory shape. The introduction chapter shows
a picture of the target hardware, a motivation why path planning is a game changer as
well as a short overview of other existing approaches. Followed by a section dedicated
to the requirements of path planning approaches in a soccer game and discussing the
drawbacks of the presented methods.

Figure 1.1: NAO
The RoboCup is an annual robot competition that was
conceived in 1995 and first held in 1997. RoboCup has
its roots in robot soccer but it is growing. Many addi-
tional stages of the competition such as "RoboCupRescue",
"RoboCup@Home" and "RoboCupJunior" besides the suc-
cor leagues exist. The RoboCup World Championships are
held annually at different locations world-wide. The Stan-
dard Platform League (SPL) is characterized by the fact that
participating teams work on the same hardware and com-
pete in soccer games with each other. Changes to the hard-
ware are not allowed resulting in the focus on software de-
velopment. The rule set ensures autonomous behavior and
limits the inter-team communication of each robot. The
used hardware is a NAO, programmable humanoid robot
developed by Aldebaran Robotics, a French robotics com-
pany which was acquired by SoftBank Group in 2015 and
rebranded as SoftBank Robotics. The most recent NAOv6
is 57.3 cm tall and weighs 5.5 kilograms. A 1.91 GHz Intel
Atom E3845 processor and two HD cameras are integrated
in the head.

2

1.1 Motivation 3

1.1 Motivation
An important and basic requirement for any moving agent is to be able to successfully
navigate the surrounding environment. This fundamental need is a requirement espe-
cially on autonomous robots. In the use case of the SPL, quick movement on the field
is one critical winning precondition in order to get hold of the ball quickly. The player
who is first at the ball has a playing advantage. Observation and analysis and previous
matches results show that reaching the ball fast seems a good idea. The rules include
statements to avoid ignorant playing and disrespectful move which lead to broken hard-
ware. In the intend to reach the ball pushing an opponent might result in a foul. Only
in the immediate duel for the ball, little touches between opponent robots are allowed.
Fouls are immediately punished by the human referee. These sanctions strongly influ-
ence the game. They are expressed by accumulating time penalties. Is case the referee
issues a penalty the punished robot gets benched for a certain time. These time penalties
should be avoided as far as possible.

HTWK
B-Human

TJArk
HULKs

0

10

20

30

average of top 3

C
al

le
d

Pu
sh

in
gs

Figure 1.2: Official called fouls of
all semifinalists at the World Champi-
onships of RoboCup 2018, Montreal, CAN.
Data: [Com18b]

It is obvious that a team missing one or
multiple robots has a decreased chance
to score a goal. Figure 1.2 shows the
executed foul penalties of the semifi-
nalists of the recent RoboCup Champi-
onship 2018 in Canada. The final place-
ments of the team regarding the Cham-
pionship is decreasing from left to right.
Nao Team HTWK became Champion, B-
Human 2nd place and so on. The black
dashed line shows the average prosecuted
pushings of the top teams during the
event. Notice that the number of called
penalties rise on the lower tiers. Only out-
lier is HTWK. This fact is caused by their
tactic used during the competition. In short terms, their tactic was: "Walk the ball into
the goal". The other teams use a more conservative tactic and are at least comparable.
One can see a correlation between called pushings and achieved rank. Team HULKs,
where i participate, did most of them all. TJArk did 25% less than and B-Human just
did 40% of Team HULKs with a total of 29 pushings called during the event. The
motivation to improve this game changing issue is the goal of this work. These time
penalties should be not caused by bad path planning.
The observation shows that the current used path planning seems to not avoid penalty
calls strong enough. These problems should be solved with this work. Therefore a

1.2 Scope 4

whole rework form scratch is done. The focus lies on a robust and fairly simple path
planning. Main goal is to avoid additional penalties but still taking the shortest route
towards the desired position. the requirements are deeply touched in section 1.5

1.2 Scope
This section covers the scope of the work. As mentioned at the beginning of the intro-
duction chapter, this work is part of the research of the HULKs. The HULKs framework
implementation is based on modules, each handles a certain task. The overall process
and data flow can be roughly split into 3 parts. The perception, decision and execution
part. There are the data acquisition modules handling all kind of perceptions tasks, an-
alyzing the robots neighborhood with all available sensors, like camera, sonar and even
touch sensors. This data is than filtered using filter modules resulting among others is a
map of the landscape and the robots position. Information is also exchanged with team
mates. This information is than passed to the processing modules which decide how to
react on intercepted world state. For example where to move next on the field. In the
end, the motion modules take care of the physical motions done by the robot, from high
level movements like walking or turning the head to just moving a joint with a certain
force to a certain angle. This workflow is repeated in loops.
The path planning tackles only a small problem of the whole. It is supposed to find the
shortest path between two locations. The two locations are the start and the destination
position. The start locations is always the positions of the robot in global coordinates.
The destination is given by a processing module in the brain part of the implementation.
It decides where to go when. The path planning integrates between the high-level de-
cision and the following motion modules. It is just outputting a path which should be
followed. The resulting path should avoid obstacles in a meaningful way. If the destina-
tion is inside of an obstacle, the path sill leads to it and not stop somewhere intermediate.
If the destination is not reachable, surrounded by obstacles, a feedback should be given
to the deciding modules.
The problem which should be solved is narrowed down to a path planning problem.

1.3 Path Planning Concept and Terminology 5

1.3 Path Planning Concept and Terminology
In robotics, the term path planning is the process defining a path which the robot has to
move based on a given situation. Another term sometimes used anonymously is motion
planning. Using an example makes distinguishing between motion and path planning
easy. For example: Someone wants to travel from Hamburg to Munich by car, the
GPS navigation would be the path planning with high-level instructions like, "turn left
in 2km". The driving itself, steering, acceleration and breaking would be the motion
planning part. Motion planning tries to follow the path established by the path planning
process considering the physical circumstances of the vehicle.
The path planning process can be optimized regarding different goals like, finding short-
est path (distance) or to minimizing the travel time. Constrains could be avoiding sharp
turns and keeping a certain distance from any obstacle any time. Depending on the ap-
plication further constrains can be needed to be taken into account. Popular example is
multi destination path planning, with interim locations, shown in the Traveling Sales-
man Problem. Often path planning must get repeated as often as possible, because the
status of the given situation, information environment changes over time. Therefore the
path selected at the start of the journey can be wrong or not feasible anymore.
The earlier introduced application of autonomous robot soccer, the path planning pro-
cess takes place on each individual robot. The control of detailed agitation of the robot,
e.g. moving its legs, turning, keeping balance, etc. is no part of path planning.
As soon as the environment around the robot is crowded by other robots or obstacles,
a collision-free trajectory is difficult to archive. Formulating a path planning problem
leads to the need of necessary information, like:

• Actual location of the robot.

• Desired target location.

• Size and shape of the robot.

• Description of the world, e.g. locations of obstacles.

The expected behavior of the robot must be formulated as well. To make resulting be-
havior comparable, specific and measurable requirements need to be established. Each
requirement needs to be judged in their relative importance. The optimal result should
be a movement from start to destination that the robot can follow under the constrains
not touching any obstacle at all, be short in distance and fast in time.
Describing the environment can be done in relative coordinates of the robot itself or with
help of a global coordinate system. The HULKs framework uses right-handed coordi-
nate systems. In case of path planning, the z-axis is going to be ignored, so we assume
that the robot and the world are only 2d. The global coordinate systems origin will be

1.3 Path Planning Concept and Terminology 6

found at the center point of the field. The orientation depends on the playing direction
of the current match. By definition the own goal is located on the negative half-space
of the x-axis. Figure 1.3 shows how the global coordinate system is aligned regarding
the field in a state of playing from left to right. Also an example of a relative coordi-
nate system inside of the global coordinate system is illustrated. The relative coordinate
systems are located inside of each robot and the x-axis points forwards and the y-axis
to the left. Further in this work the path planning will take place in global coordinate to
make examples comprehensive and clear.
The path planning problem needs be formally described. To simplify the description it
is not given in the real world, it gets transformed to another space. This transformation
gets rid of any robot properties like shape or move-ability constrains and is called con-
figuration space (C-space). The configuration space represents the space which can be
reached by the robot. The physical shape of the robot as well as the dimensions of free-
dom (DoF) have impact on the configuration space. A robot’s configuration specifies
information about the robot such as position, proportions and joint angles. Therefore,
the configuration space has exactly as many dimensions as the robot has dimensions of
freedom.
In case of the path planning problem in this work the configuration space is very simple.
By making simplifications regarding the robot’s shape and movability the configuration
only contains the position, therefore configuration space will have 2 dimensions and the
robot will be represented as a point. The real proportions and shape of the robot are
included in the size of obstacles, generally such intense simplification is not the case.
The shape of the robot is simplified to a circle. The circles introduce a rotation invariant
behavior. It doesn’t matter what orientation the robot is in, a circle stays a circle.
Using these simplifications the transformation from working space to configuration
space can be shown as a picture. Figure 1.4 and 1.5 illustrate the transformation. As
illustrated the obstacle becomes larger. The size increase is half of the robot’s diame-

−4 −2 0 2 4

−2

0

2 y

xy
x

origin of global c.s.

origin of relative c.s.

Figure 1.3: Origin of the global coordinate system (c.s.) is located at center point,
pointing to opponent goal. Relative c.s. placed at center of the robot.

1.3 Path Planning Concept and Terminology 7

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0 robot

Figure 1.4: Work space of a circular robot in a open area with a rectangular obstacle.

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0 robot (point)

Figure 1.5: Configuration space of a circular robot in an open area with a rectangular
obstacle. Area inside

1.3 Path Planning Concept and Terminology 8

ter. Such C-space can be obtained by sliding the shape of the robot along all edges of
blocked regions. This can be seen as a simple dilation operation (

⊕
) in mathematical

morphology. During a dilation, a so called structuring element is used to expand an-
other input element. Using the circular shaped robot as the structuring element and the
environment of the robot as input, the blocking edges get broaden. The resulting free
space represents all locations where the center of the robot can move without touching
any blocking edge. It is called free space. This can heavily depend on the rotation of the
robot, if the robot shape is not rotation invariant like the circular robot in the example.
This will enhance the complexity of the path planning. Let W = Rm be the work space
with m the dimensions, O ∈W the set of obstacles, R(c) the robot in configuration c
with C being all configurations.

C f ree = {c ∈C | R(c)∩O = /0} (1.1)

Cblocked =C/C f ree (1.2)

Further let cstart and cdst be the start and the destination configurations. Than a mathe-
matical formulation of the a path planning problem will narrow down to the following
equation:

τ : [0,1]→C f ree

with τ(0) = cstart and τ(1) = cdst
(1.3)

With the help of the configuration space, one can do path planning with the circular
robot just being a point in the configuration space. If the real world is continuous, it
needs to be discretized for the path planning. A straight forward approach would be
sampling the environment and use some kind of collision detection to test certain spots
and incrementally search for a solution in in the configuration space. These methods are
called sampling base methods. Popular examples would be the Probabilistic Roadmap
(PRM) approach or Rapidly Expanding Random Tree (RRT) method. They character-
ize C f ree into a graph in which vertices are configurations and edges are representing
collision-free paths through C f ree. This graph is then searched for a solution. The graph
is kind of a discretasation and sampling. The sampling method varies a lot. A totally
different approach takes the Potential Field method. It is not based on a graph but on
a potential field and a gradient decent method to find the minimum of that field. See
section 1.4.4 for detailed information.

1.4 Existing approaches 9

1.4 Existing approaches

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

start destination

Figure 1.6: Example situation with 4 obsta-
cles.

This section consists of a small selection
of existing approaches. Some of the ex-
amples shown refer to the follow example
situation. Figure 1.6 shows a typical il-
lustration of a soccer field. This type of
figure will appear very often in the later
chapters and sections. Obviously it deals
with a soccer field, showing both penalty
areas as well as the center circle and other
field marks. The orange circles represent
known obstacles, such like other robots or
areas that need to be avoided. The yellow-
blueish point on the left hand side shows
an arbitrary starting position of a robot.
The red cross marks the desired destination. The field shown has the correct dimen-
sions, the axis are marked in Meter, and are given by the SPL rule book.

1.4.1 Probabilistic Road Maps
The Probabilistic Road Map (PRM) method is a typical path planning approach based
on sampling the environment. It is widely used and studied [GO04]. The approach
samples the configuration space for configurations which are in C f ree. Each valid con-
figuration is then added as a vertex to a graph, the road map. As the name suggests the
sampling process uses a probabilistic approach. It generates possible configurations at
random. This can happen without any structural information about the whole configu-
ration space therefore without knowing the environment. The only requirement is a way
to check if a vertex is inside of Cblocked , to determine a collision, and if not adding it to
the graph. The second step of PRM is to connect promising nodes inside of the graph.
This is done by a local planner until the graph sufficiently represents the environment.
The description given above is just a rough guide on how the principal works, but it
leaves details open. How to sample the configurations space reasonable, how does the
local planner connect promising node, what are promising nodes?
Figure 1.7 illustrates a resulting graph of a typical PRM approach. The start and desti-
nation are marked as a blue circle with a red dot and a red cross, respective. The smaller
red dots are vertices of the graph. The yellow edges show the interconnection between
them. The orange larger circles are obstacles which need to be avoided. As shown the
graph connects the start and the destination, accomplishing the goal of path planning.
But it is obviously not the optimal path and it is not smooth at all.

1.4 Existing approaches 10

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

start

destination

start

destination

Figure 1.7: PRM example. Shows the vertices generated by uniform random function
and the connecting edges resulting in the graph of a PRM approach.

Recent publications show that the PRM method is still interesting. [SGS17] shows that
PRM combined with the cubic Ferguson’s spline technique can generate smooth tra-
jectories. It uses a classic PRM in the first step and simply refines it to make it very
smooth. The proposed algorithm is also optimally asymptotic and can satisfy direction
limitations of the start and destination location.
In [KUT18] the authors presents a multi-query sampling-based planner resting on the
PRM method. It can handle diverse types of planning uncertainties. It uses a sam-
ple classification technique to identify uncertain samples. This mechanism seems to be
able to react to uncertainties by using a layer of nodes (samples) around the sensitive
one. All samples are saved in a matrix-grid structure. Simulation results show the ef-
ficient performance of the proposed planner in producing semi-optimal solutions with
low computational cost.

This allows this planner to be applied to almost any kind of robot with arbitrary
DOF.

1.4.2 Rapidly Exploring Random Trees
Initial approach published in 1999 by Lavalle and Kuffner in [LK99] under the name
Randomized Kinodynamic Planning. Nowadays called Rapidly Exploring Random

1.4 Existing approaches 11

Trees (RRT) is a search algorithm and belongs to the sampling approaches. The ba-
sic idea is to probe and explore the environment in a random manner starting from an
initial position. The exploration takes place in the configuration space and will result in
an incrementally expending tree. The tree will mark the explored environment with the
root being the initial position. This algorithm is often used for motion planning and for
efficient movements of robots as in [SS15] and [QMI+14].
The basic procedure of the sampling process is shown in algorithm 1.

Algorithm 1 Rapid Exploring Random Trees

1: graph.init(initial position)
2: do
3: Crand ← Random configurations
4: Cclosest ← CLOSEST(graph, Crand)
5: graph.addEdge(Cclosest , Crand)
6: while finished

In line 1 the graph is initialized with just the start position as the only vertex and
no edge. Line 3 takes a randomized configuration out of C f ree and calls it Crand . This
sample mostly comes form a region around the initial position for example a random
translation of the initial position. The CLOSEST function is called in line 4 and returns
a vertex inside of G which is closest to the Crand . The CLOSEST function can use any
metric defined in the configuration space. The last line, line 5, represents the expansion
of the graph by adding an additional edge between the new random configuration and
the closest vertex inside of the graph. Depending on the environment an additional col-
lision check needs to be made so that the new edge does not interfere with any obstacle.
Therefore, the new edge is not leaving C f ree at any point. If an interference occurs then
one could simply add an edge in the same direction but ending as close as possible at
the obstacle.
Using this approach for path planning problems seems quite costly. Because it will only
terminate if the Crand hits the desired destination. This is quite unlikely. To overcome
this, just start the RRT and every 1000th (arbitrary guess) iterations force Crand to be
the desired destination. Subsequently, as soon as the destination is insight in the config-
uration space the likelihood adding such an edge to the graph is very high.
However some environments require even more specialization. In some cases it is neces-
sary to use a bidirectional search approach. Grow two separate RTTs, RRTs and RT Tdst
with their random chosen configurations srand and dstrand . One starting at the initial
position and the other at the desired destination location. After arbitrary steps, try to
connect the closest vertex of each with the other. So that closest(RRTs, dstrand) and
closest(RRTdest , srand) form the new edge. This will direct the search towards each
other.

1.4 Existing approaches 12

Overall RTTs are quite popular and many additions and modifications exists. For exam-
ple [NRH15] presents an algorithm for real-time path-planning in a dynamic environ-
ment based on RRTs. Another variant is the informed RRT. It improves the convergence
speed of RRT by introducing a heuristic, similar to the way in which A-Star improves the
basic Dijkstra algorithm, [GSB14]. RTT approaches provide a good balance between
an greedy search and exploration approach. They are fairly easy to implement. Problem
is the unknown rate of convergence and their sensitivity when it comes to parameters,
like the metric.

1.4.3 Visibility Graph

−4 −2 0 2 4

−2

−1

0

1

2

start

destination

start

destination

start

destination

Figure 1.8: Visibility graph example.

The Visibility Graph is a popular concept and can be used in motion and path plan-
ning, [RId88]. Without any adjustments it works with a point shaped robot and poly-
gon shaped obstacles. Fundamental idea is to represent the collision-free space with a
graph. Nodes lie only in the free space and neighboring nodes, connected by an edge,
are collision-free and simple to reach. The graph should represent the work space fair
enough. As the previous approaches, the graph will reduce the path planning problem
to a graph search. The concept of constructing the graph is simple. An example of a
visibility graph is shown in figure 1.8 illustrating a partial soccer field with triangular

1.4 Existing approaches 13

obstacles. The obstacles are the 3 orange triangles, in general any polygon can be used.
The yellow edges show the neighbors of each vertex. As one can see only polygon cor-
ners are vertices in the graph, except the start and destination, and all edges are straight
line segments. This observation implies the following: the shortest path from start to
destination must be shown n the graph.
The edges get constructed using the visibility constrain. The neighborhood of a ver-
tex is always in "sight", the edge is interfered by any obstacle. Therefore, the shortest
way between the vertices is represented by their interconnecting edge. This rule seems
simple but it is computational expensive. [AAG+85] shows how to take advantage of
a special data structure from which it is possible to compute visibility problems nicely.
The authors use a method to efficiently calculate line segment intersection in a collec-
tion of line segments. This method is known as the sweep line algorithm and finds
usage in computational geometry, [BCKO08]. The idea of such an approach is to use
an imaginary line which moves over a plane. It stops at some points. All geometric
operations, for example the intersection calculations between line segments, are only
done at objects that are close or intersect with the so called sweep line at these stopping
points. After the sweep line passed over all objects, the complete solution is done. This
approach is also used during the initialization of the presented algorithm in chapter 3 in
section 3.3.1.
Using this graph with a simple graph search results in an optimal path. The weight is
given by the Euclidean distance between vertices of an edge. The computational effort
constructing has been pushed down during the recent decades. The naive approach takes
O(n2). An algorithm presented in 1987 by Subir Kumar Ghosh and David M. Mount
introduced the output sensitive property and a complexity of O(e+n∗ log(n)), where e
is the number of edges in the visibility graph and n is the total number of vertices in all
the obstacles, [GM87].
However, looking for only one shortest way there is an algorithm with optimal run-time
of O(n∗ log(n) presented in 1999, [HS99].

1.4.4 Potential Field
[JW10] The current implemented solution of team HULKs is based on the idea of the
potential field approach. The other approaches try to navigate through a graph connect-
ing configurations, or in case of rotation invariant robot, positions inside of C f ree. The
potential field method follows a different approach. The robot is represented as a point
in C f ree which acts just as a particle in a potential field. The environment influences the
particle in such a way that it floats from start to destination. Inside of that potential field,
repulsive forces form all obstacles and an attractive force pulling the particle towards
the destination superimpose each other.
Let Urep(c) be the sum of all repulsive forces of the obstacles at configuration c and

1.5 Requirements 14

Uatt(c) the pulling force of the destination at c. Leading to the potential function:

U(c) = Urep(c)+Uatt(c) (1.4)

This approach will result in a smooth trajectory around all obstacles. The situation
shown in figure 1.6 is used as an example to visualize such a potential field. The repul-
sive effects are shown in figure 1.9a, each obstacle creates an effect seen as a mountain
in the plot. Figure 1.9b illustrates how the destination location is acting like an attract-
ing sink hole. The summation of both is shown in figure 1.9c. A particle, a robot, can
calculate at any point in which direction he has to move to reach its desired destination.
The computation is a simple gradient decent approach. As seen in the plots above, fig-
ures (1.9a, 1.9b, 1.9c), the configuration space is discretized in a grid. Depending on
the size of the used grid the computational effort can vary heavily. Another problem is
the possibility of dead ends without any chance to get out using gradient decent. Such
a local minimal can be seen around (1,−1) between the two obstacle which are close to
each other. A solution could be to constrict a local minima free environment by modify-
ing the characteristic of the obstacle, like size or impact on the potential field. Explicit
calculation of the free C-space can be very costly.

1.5 Requirements
The path planning problem faced in a SPL game can be solved using the mentioned ap-
proaches. But these methods introduce drawbacks. For example the Probabilistic Road
Map approach is not optimal and can lead to not solving the problem at all. Which is
a bad behavior during a match. The currently used approach using potential fields can
lead to dead ends for example.
The strictly limited environment encountering during matches can be used to optimize
existing approaches and special requirements can be implemented. A solution perfectly
tailored to the scenario is desired. A general solution to all ever upcoming path planning
problems is not needed. This section sketches the demands and requirements of a path
planning solution.

The shown approaches seem promising. But some of them are computational too ex-
pensive an other do not provide the wanted features. The essential requirement is to
minimize length of the path. The robots are fairly slow and being quick at a wanted
position improves the overall game performance. A constrain would be the necessity
of a collision free motion, as mentioned in section 1.1. Apart from following rules, ob-
stacle avoidance can also help being quick at a position. If a robot falls, it loses time.
The stand up motions are very time consuming. Falling has an additional impact on the
robot itself. Breaking arms, legs or even loosing a head occurred in the past. Stressing
joints, e.x. during stand up motions, lead to high load in the actuators impacting the

1.5 Requirements 15

(a) Urep (b) Uatt

−4 −3 −2 −1 0 1 2 3 4
−3
−2
−1

0
1

2
3

(c) U(c) = Urep(c)+Uatt(c)

Figure 1.9: Summation of attractive and repulsive effects. Resulting in a potential field
used for path planning.

heat. Heated joints tend to loosen up and joint measurements become inaccurate which
finally lead to very unstable walking. The humanoid design of the robot comes with
some limitations considering the shape of the path. Trajectory should be smooth and
continuous without any sharp corners. Turning on spot needs a lot of tiny steps. The hip
joint movement is here the limiting factor. Tiny steps have a strong impact on the speed
introducing additional delay on reaching the desired position. Observations showed that
small diagonal or circular trajectories have less negative impact on the overall traveling

1.5 Requirements 16

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

start destination

Figure 1.10: Example showing the detour produced

speed of the robot, therefore a certain smoothness of the path is wanted.
Reviewing the existing approach considering the above constrains exclude some en-
tirely. The only presented existing approach meeting these requirements seems to be the
VG approach, 1.4.3. The Probabilistic Road Map approach, sec. 1.4.1, doesn’t guar-
antee finding a path at all. Also the length of the resulting trajectory depends strictly
on the smart probabilistic positioning of the sample points. Each visited way point will
result in turning on the spot to align to the next edge. To overcome the corners in the
trajectory one could smooth it after. [SGS17] proposes a trajectory planning method for
a mobile robot based on Probabilistic Roadmaps combined with the spline technique to
generate smooth trajectories. But introducing such a method seems like a complication
of the task. The HULKs use currently a potential field approach. Apart from the possi-
bility of not finding a path at all, a major drawback is, it only reacts on close obstacles
to overcome this one could increase the radius and the height of obstacle in the potential
field. Introducing a large repulsive force impact size, but that will also lead to a much
greater detour. The size of an obstacle as direct influence on the avoidance radius. No
early reaction at least with small obstacle sizes can be archived. The importance of
an obstacle having very early impact on the path planning is illustrated in figure 1.10.
The detour cased by not reacting early on obstacle within the potential field approach is
marked in yellow. In contrast the blue optimal trajectory is shown.
The optimal path is found using the Visibility Graph method. It seems to be a Swiss
army knife, it is optimal, no detours are needed and it is complete, if there is a path it
will find it. Problem could be that it is based on a pre-built graph, computing this graph
can come with computational cost.

Chapter 2: Prerequisites

This chapter presents prior knowledge and used terminology as well as additional infor-
mation regarding chapter 3. It is used as a reference in some section of chapter 3 and
is not specially needed to understand the presented and developed approach. Reading it
before hand is not a necessity.

2.1 Calculation of Tangents
The calculation of tangent lines plays a major part in the underlying graph structure.
This section describes how tangent lines and their related points can be calculated. The
approach presented in chapter 3 states two types of situation in which a tangent problem
needs to be solved. The first would be to find the tangent lines between a point and a
circle. Figure 2.1 shows the resulting scene.
To anticipate, the approach introduced in chapter 3 will only lead to this problem with

T

P
C

Figure 2.1: Tangent lines and corresponding tangent points between a point P outside
of a circle. C center of the circle and one tangent point T .

the point located outside of the circle. This fact simplifies the calculation, no other cases
need to be handled. This calculation is well documented which is why only a brief in-
sight is given.In the following part PT represents the line defined by point P and point
T . A line segment starting by point P and terminating at T is shown as

»
PT .

17

2.1 Calculation of Tangents 18

»
PT is only an tangent if PT ⊥ CT and | # »

CT | is equivalent to the radius of the circle.
That implies that

»
PT is the tangent and T the tangent point of P and the circle. Us-

ing the Thales’s theorem and an auxiliary circle located half across
»
PC one can easily

calculate the tangent point coordinates. The other situation which will occur is the com-
putation of tangent points between two circles. In general there will be 4 tangent points
at each circle, 2 inner and 2 outer tangents lines. Figure 2.2 shows that case. If the
circles overlap each other, the inner tangents will not be defined, leaving only the outer
tangents. If the circles are completely inside of each other no tangent exist at all.

Figure 2.2: All 4 tangent lines and the corresponding 8 point between two circles with
different radius.

Figure 2.3: Con-
struction method be-
tween 2 circle with
same radius.

The computational effort is depending on the overlap state of
the circles. Further, only cases where tangents exist are touched.
Edge cases need to be handled elsewhere.
Both circles having the same radius implies that the outer tan-
gents are a translation of the center connecting line segment.
The translation takes place perpendicular to the connecting line
segment direction. The length of the translation is the radius
of the circles. Also the inner tangent calculation is simple. It
reduces to 2 point to circle tangent calculations, just as the pre-
vious discussed case. The location of point, P, is determined
halfway between the two circle centers. Figure 2.3 illustrates
the situation and the resulting simplifications. The red dashed
line shows the center connecting line and the red arrows one
translation direction. To construct both outer tangent points also
a translation in the opposite direction is needed. The green line
segments are the result of one point to circle tangent calculation

2.1 Calculation of Tangents 19

using the corresponding point. Repeating this for the other circle will result in all 8
tangent points.
In case the circles have different radii, the calculation method is changed. Such as the
prior method used to compute the inner tangents, the problem gets modified so it can
be solved using the introduced point to circle tangent calculation. Figure 2.2 shows the
outer tangents are not longer parallel to the center connecting line segment. So a simple
shifting will not help. Calculating the outer tangent, an auxiliary circle is used to com-
pensate the radius difference between the two circles. Its center is located at the center
of the larger circle and the radius is the radius difference of the two circles. Figure
shows the auxiliary circle in red. With that circle the point to circle method in combi-
nation with a translation is used to calculate the real outer tangents. The translation is
shown with red arrows.

Figure 2.4: Construction method of the
2 outer tangent line between circles with
different radius.

Figure 2.5: Construction method of the 2
inner tangent line between circles equiva-
lent radius.

The inner tangents are calculated in a similar way, also using an auxiliary circle. The
center is also the larger circle and the radius is the larger radius added with the radius
difference. The auxiliary circle is drawn in green in Figure 2.5. Next is to again use the
point to circle method to find a tangent between the auxiliary circle and the center of the
smaller circle and translate it to the proper position.
Repeating this approach for all cases of outer and inner tangents will reveal all tangent
points and their related tangent lines.

2.2 A-Star Graph Search (A*) 20

2.2 A-Star Graph Search (A*)
This section introduces the popular A-Star Graph Search. It was first published by Peter
E. Hart, Nils J. Nilsson and Bertram Raphael in 1972 [HNR72]. The A-Star search
algorithm finds the shortest path between 2 locations. It uses a graph with positive
edge weights. Each location is represented as a node. The algorithm is considered as a
generalization and extension of the Dijkstra algorithm. It extends the Dijkstra search to
use a heuristic to focus the search towards the destination. The heuristic has impact on
the progress of the search and can be used to control its behavior, see 2.2.1. As long as
the heuristic is admissible A-Star guarantees the optimal path.
The algorithm works on a graph consisting of nodes and edges. These nodes can be
grouped in 3 different collections. Unknown nodes: These are not visited yet and no
path lead to them. At the start of the algorithm all nodes, except of the start node, are
unknown and belong to this group. Known nodes: Nodes which are seen and a path does
exist. This must not be the optimal path it could be updated in later algorithm steps. All
known nodes are noted in the so called openlist. As mentioned at the start it only holds
the start node. Visited nodes: Nodes to which the optimal path is found. These nodes
are noted in the so called closedlist. This list is used to avoid looping and examine a
node multiple times. This list is at the start of the algorithm empty. The two lists are
sorted. The order giving value is the F-Value, it is calculated by adding up the real costs,
g(x) and the heuristic, h(x) where x is the node. Each node inside of the openlist and
closelist has a parent node which is used to backtrack the optimal path. A pseudo code
example can be found at algorithm 2.

2.2.1 Heuristic control
At one extreme, if h(n) is 0, then only g(n) plays a role, and A* becomes Dijkstra’s
algorithm, which guarantees to find the shortest path. If h(n) is always lower than (or
equal to) the cost of switching from n to the target, then A* is guaranteed to be the short-
est path. The lower h(n) is, the more the node A* expands and the slower it becomes.
If h(n) is exactly the same as the cost of switching from n to the target, then A* only
follows the best path and never expands anything else that makes it very fast. Although
you can’t achieve this in all cases, you can specify it in some special cases. It is nice to
know that A* behaves perfectly with perfect information. If h(n) is sometimes greater
than the cost of switching from n to the target, then A* is not guaranteed to find the
shortest route, but it can run faster. At the other end, if h(n) is very high compared to
g(n), then only h(n) plays a role, and A* becomes greedy best-first search.

2.2 A-Star Graph Search (A*) 21

Algorithm 2 Sample A* pseudo code
Require: g_score, parent are hash tables

1: function SEARCH(start, destination, environment)
2: initialization
3: open.put(0, start) → The queue is sorted by the first entry, 0
4: while not open.empty() do → main loop start
5: current = self.open.get() → node with smallest f-score
6: if current == destination then
7: return "Finished" → destination found
8: end if
9: for all neighbor ∈ graph.neighbors(current) do

10: new_g_score := g_score[current] + cost(current, neighbor)
11: if (neighbor not visited) or (new_g_score < g_score[neighbor]) then
12: Update or save new g-score and parent
13: f _score = new_g + heuristic(neighbor, destination)
14: open.put(f _score, neighbor)
15: end if
16: end for
17: end while
18: end function

Chapter 3: Algorithm

The algorithm as devolved and investigated here is based on "A-Star graph, search" but
modified in that sense, that the graph is built interactively during the search process.
The proposed algorithm simultaneously searches and builds the graph. In contrast to
a graph search which takes a graph as input, building the graph before hand is not
necessary. The construction of the graph takes place parallel to the search. Therefore in
each step of the algorithm the graph gets deeper and expends. Assuming the plain case
during a SPL match with 10 robots in total can result in a visibility graph with at least
9 ∗ 2+ 8 ∗ 7 ∗ 4+ 9 ∗ 2 = 260, nodes not including additional blockages. Combining
search and build avoids the computational effort of building not needed parts of the
graph. The resulting graph is a modified tangent graph, working with circular obstacles
and the situation in an SPL game. The computed path only consist of alternating straight
lines and circular arcs, producing a smooth and continuous path.

3.1 Basic Concept

−4 −2 0 2 4

−2

0

2
start destination

Figure 3.1: Nontrivial path planning situa-
tion. One large obstacle between start and
destination. Obstacle is shown by transpar-
ent orange circle.

This section provides the fundamental
idea behind the algorithm. As mentioned
in section 1.3, the problem is maneu-
vering from point A to point B in a 2-
dimensional space. The space is likely
not empty, use a straight line in between
the points is not always the best choice or
possible. The algorithm does avoid ob-
stacles in a straight manner. An obstacle
could be a circle, defined by a position
and a radius. The first example will take
a single obstacle in to account and put the
start and destination locations on opposite
sides of the obstacle. The resulting trivial
path is shown in figure 3.1.

22

3.1 Basic Concept 23

The robot is marked as a blue dot on the left hand side. Desired location is illustrated as
a red cross. Task is to plan a path to the target position avoiding any collision with the
obstacle. The obstacle is shown as the orange circle between start and desired destina-
tion. The shortest possible path, shown by the yellow line, interferes with the obstacle.
The wanted output is the best trajectory avoiding the given obstacle. As shown in section
1.4 different concepts of creating trajectories exist. To find possible paths a visibility
based approach is used.
In the first step the visibility approach leads to two possible locations. The state gets
represented in a graph G(V,E). V is the set of vertices and E is the set of connect-
ing edges. Each vertex of graph G represents a point location, each edge represents a
connection between them. Only vertices at inter-visible locations are connected by an
edge and added to the graph G. In the first step in each loop of the algorithm, similar to
A-Star, is to pop the first vertex from a priority queue. The priority queue is initialized
with one vertex, the start location. In the first step, this vertex gets taken from the queue
and is handled as the current vertex. Next step is to find the neighbors of the current
vertex. In the example, using the visibility approach to find next possible positions in
the free space leads to two valid locations. The resulting situation is illustrated in figures
3.2 and 3.3.

−4 −2 0 2 4

−2

0

2
start

destination

3

4
1

Figure 3.2: Neighbor vertices of the start
vertex based on the position of the tan-
gent points of the obstacle and the start
location.

1

3 4

1

Figure 3.3: Search tree, showing vertex
3 and 4 being children of the start vertex
1.

Figure 3.3 shows the tree structure of the underlying graph. This structure will evolve
further each interaction. The topology will always be a tree with the starting vertex as its
root. As shown in figure 3.3 the two tangent points between start location and the circle
of the obstacle define two possible positions. These two vertices are children and neigh-
bors of the start location, as indicated by the yellow line connecting each. More about
finding neighbors is described in section 3.3.3 focusing on the exploration method. In
case of more obstacles visible from the current vertex in the environment, there would
be more neighbors as well. Figure 3.11 illustrates a situation with 3 visible obstacles.

3.1 Basic Concept 24

−4 −2 0 2 4

−2

0

2
start

destination

3

4 5

6
1

Figure 3.4: Field with graph of all ver-
tices, after 2nd loop.

1

3 4

5 6

4

Figure 3.5: Search tree. Showing vertex
4 as current vertex and its neighbors.

The neighbors will be put in the priority queue. The order of the queue is determined
by the score of each vertex. The score of a vertex A is the sum of the length of all edges
on the path between A and the root vertex. The tree topology implies that there exists
only one path and due to updated parent relations it is also the shortest. Additionally to
the length of the path a heuristic is added to the score as well, Similar to A-Star. In this
case the Euclidean Distance between A and the destination vertex is used as heuristic,
but one could include additional factors. This is similar to the f-score in a A-Star search,
see 2.2.
After adding the neighbors of the current node to the priority queue the 2nd iteration of
the algorithm starts with the first step again. Pop the first vertex of the priority queue
and consider it as the current vertex. Just as in the first iteration, but obviously a dif-
ferent vertex would be in first place of the queue. In this case the current vertex would
be positioned on the arc of the obstacle. Next step would be to find the neighbors. In
this situation the neighbors are derived differently as in the first iteration. All neighbors
of a vertex lying on the arc of an obstacle are all vertices also located on the same arc.
Except its parent, but it is a neighbor too. In this case the parent is the start vertex. The
other candidate positions along the arc of the obstacle are calculated. Further in this
work that process is referred as populate. It’s done not more than once per obstacle.
See section 3.3.3 for more. The figures, 3.4 and 3.5 show the result of the 2nd iteration
including the neighborhood relation. The illustration implies that vertex 4 was first and
got popped out of in the priority queue and is used as current vertex, marked in blue.
Figure 3.5 shows the spanning tree of the internal graph generated by the search at the
end of the interaction cycle. The neighbors in the spanning tree are not necessarily the
same as the possible neighbors, shown in 3.3.3. Vertex 4 has two child-vertices, 5 and 6
which got added to the priority queue. As mentioned, the positions of 5 and 6 were cal-
culated during the populating process of the obstacle. In this case they are the tangent
points of the obstacle and the destination location.
In the following third iteration the same procedure is applied. Shown in figure 3.7 ver-

3.1 Basic Concept 25

tex 5 was selected as the most promising according to the priority queue and used as
current vertex. In the graph which is illustrated in figure 3.6, it has 3 neighbors in total.
In contrast, the minimal spanning tree in figure 3.7 it has two neighbors, vertex 2, which
is the destination vertex and its own parent vertex 4. Each edge of the graph has one
incoming and one outgoing vertex. The words incoming and outgoing are defined con-
sidering the graph and the obstacles. A vertex is incoming if its parent is not located at
the same obstacle as itself. An outgoing vertex can only have one child. In this case ver-
tex 5 acts as an outgoing vertex. Its child, vertex 2 is now in the priority queue. Finally

−4 −2 0 2 4

−2

0

2
start

destination

3

4 5

6
1

2

Figure 3.6: Visualization of evolving al-
gorithm state. End of iteration 3.

1

3 4

5 6

2

5

Figure 3.7: Search tree. Showing vertex
5 as current vertex.

the last loop uses the destination as its current vertex. As stated in the standard A-Star
implementation the algorithm stops and is finished. During the algorithm the minimal
spanning tree is updated and stored in the graph structure. Using that information a
backtracking approach leads to the final path. Figure 3.8 illustrates the resulting path.
The path consists only of straight edges and partial circular arcs. This leads to a smooth
and continuously path which a robot can easily follow.

3.1 Basic Concept 26

−2 −1 0 1 2 3 4
−2

−1

0

1

2

start destination

Figure 3.8: Output trajectory, optimal path from start to destination with no corner
only smooth continuous avoidance of the obstacle.

The described approach is not even close to a productive stage. It cant handle edge
cases and isn’t robust at all, it needs to be improved. Later in this chapter further en-
hancements and clever mechanisms are introduced. With these approaches the concept
will be able to handle real game scenarios.

For more flexibility and to address possible rule changes by the SPL, a requirement
was set. The proposed approach needs also to handle rectangular shaped obstacles. For
example the SPL rules, [Com18a], state the Illegal Defender Penalty rule which regu-
lates the maximal number of defending robots inside a teams penalty area. The referee
is encouraged not to punish a player if its intention is to leave such a blocked area. With
rectangular shaped obstacles the shown approach will result in a rectangular trajectory
causing the robot to rotate on spot which again results in slower movement and there
increasing the time to reach its destination. Without introducing more complex obsta-
cles a rectangular obstacle can get represented by four obstacles located at each corner
of the rectangle with a visual blockage between them. This visual blockage is just a line
which interferes with the inter-visibility check mentioned above. These rectangles are
called blocked areas. Using an obstacle at each corner of the blacked area will round
up the corners of trajectory depending on their size. The substitution of the obstacle
in the given example with a blocked area is shown in the following figures. Figure 3.9
illustrates the resulting trajectory. As mentioned, introducing obstacles at each corner
ensures a smooth and continuous path. Figure 3.10 displays a magnified part of the top
left corner of the blocked area.
This way of handling blocked areas does not stop at rectangular shapes, polygons can
easily be represented as well by creating an obstacle at each corner.

3.2 Data-types 27

−4 −2 0 2 4

−2

0

2
start destination

Figure 3.9: Final trajectory with one
rectangular blocked area between start
and destination.

−0.7 −0.6 −0.5 −0.4 −0.3

0.4

0.5

0.6

Figure 3.10: Zoomed in figure 3.9.
Showing top left corner of obstacle, tra-
jectory gets rounded, smoothing effect.

3.2 Data-types
Before going into more detail of the enhancements and additional functionality an
overview of the used data structures and types is given.

3.2.1 Input-Vector
The input vector contains the environment of the robot as well as its own position and
destination position in absolute coordinates. To keep things simple, all locations are
handled as absolute coordinates, also called world coordinates. As mentioned, before
the environment of the robot is a known SPL soccer field. The center point is the coordi-
nation origin, the X-axis points towards the opponent side. The system is right-handed
and the Y-axis lies in the field towards the ’top’ of the field. Playing direction would be
left to right.
Let Cpos = {c1,c2, . . .cn} with cx = (x,y) be a vector containing all positions of the ob-
stacles, Cr = {r1,r2, . . .rn} be a vector containing the associated radii, and start, dst
are start and destination positions respectively. Which leads to an input vector of the
following:

Iv = {Cpos, Cr, start, dst} (3.1)

Since this algorithm works only on a snapshot of the surroundings as input nothing more
is needed.

3.2 Data-types 28

3.2.2 Graph
The "Graph" holds all the information that is generated and required by the search al-
gorithm. It grows and changes during run-time and needs to hold a certain state. This
can be represented easily by using object oriented approach. Using a class is a suited
method to organize and incorporate related function calls which modify the data. In this
subsection the focus lies on the data storage competence of the graph class and its used
data types. A typical graph consists of vertices and edges. In case of the used topol-
ogy, see section 3.3, the graph structure is used in a slightly different way. As shown
in section 3.1, about the basic function of the algorithm, the graph is built dynamically
during the search. So it will change upon usage. To decouple the search algorithm and
the graph structure, the graph does not directly hold any vertices by its own. But it holds
information about the edges and the environment. The environment includes obstacles,
start and dst locations. Edges are organized in a hash table mapping a vertex as an input
to a list of connected vertices.

−4 −2 0 2 4

−2

0

2

3

4
56

7

1

Figure 3.11: Environment with more then
one obstacle.

Given the situation of figure 3.11, look-
ing up the hash of vertex 1 will result in a
list l of vertices, l = {3,4,5,6,7}. By de-
sign the actual starting point is defined as
vertex 1, the destination point is vertex 2.
Further the graph needs to hold the set of
obstacles, the destination and the starting
position. These are needed for comput-
ing the unknown vertices requirement by
the search algorithm. During initializa-
tion the graph will be fed with the needed
information from the input vector Iv.

3.2.3 Search Algorithm
As mentioned in the introduction of chapter 3, the search algorithm is based on an A-
Star search approach and therefore has a lot in common with it. Major part of the search
algorithm is the priority queue. It represents the open list of the A-Star and hold all ver-
tices with the most promising at the top. But also additional information will be stored
and used. This always depends on how the implementation handles certain parts but as
mentioned in the previous section about the graph part, the search tree is not part of the
graph structure and lies in context of the search algorithm. The search tree is a minimal
spanning tree and can be represented as table of vertices pointing to their parent. This
can be done using a hash table mapping a vertex to its parent vertex. Another table
holds the corresponding g-value, similar to A-Star. The g-value is the cost to get from

3.3 Design 29

the root vertex to another vertex. In combination with this value, the minimal spanning
tree is created by using the cost between vertices as weights. In contrast to an normal
A-Start approach the necessity of holding a so called closed list is not the case. Holding
all g-values in a table able to check if a vertex is already visited makes the closed list
redundant. Not only holding the parent of each vertex is important, but the different
type of connections. Vertices can be connected via a circular bow or a straight line, this
needs to be saved as well. Otherwise the backtracking can’t compose the correct path
later on.

3.2.4 Output, the trajectory
The final outcome of the whole approach is a trajectory which can be executed by the
robot. As described in section 3.1 the trajectory should only contain straight and partial
circular arc edges. During the backtracking to find the result they get written in a result
vector, p as shown in equation 3.2.

p = {s0,s1,s2, . . .sn}, with sx ∈ {line,arc} (3.2)

In correct order the edges form the final result of the algorithm form the trajectory.
The result vector gets pushed in the data flow of the HULKs framework for further
application, for example inside a step planer module providing the next physical step of
the robot.

3.3 Design
This section covers the design of the algorithm. Therefore it will split the approach in
an organized manner. Implementation details are avoided and are found later in chapter
4. Starting point of the approach is the search part, subsection 3.3.2 but before that a
initializing phase needs to take place, see subsection 3.3.1. The initialization handles a
lot of specific edge cases. From there it will lead to the outer search part followed by the
inner logic and all measures which are taken to archive a useful output in all situations.
The inner logic is based around the graph, which was introduced in section 3.2.2.

3.3.1 Initialization
The environment determines the dedicated conditions of the input vector. These con-
strains have a large impact on the process of finding a optimal path. This happens during
the initialization of the graph. The graph is responsible to feed the search with mean-
ingful data as well as maintain it. As mentioned the search behaves alike an A-Star
search, it needs information of costs between vertices as well as the neighborhood of

3.3 Design 30

each vertex. These facts are provided by the graph. To initialize, the graph needs the
input vector. Before using the input vector, the information is filtered. The list of ob-
stacles, including their radius can be pretty long specially considering multiple blocked
areas and all robots on the field. This list can be narrowed down to relevant obstacles,
obstacles which are really used during the algorithm. First one can argue that obstacles
inside of others can be neglected. Because the robot will not go inside of any obstacle.
Therefore only fully overlapped obstacles should be ignored. To check if circles are
inside of each other a sweep line algorithm is used. The remaining obstacles only exist
inside the graph. Lets call them extended obstacles.

3.3.1.1 Extended Obstacle

Extended obstacles function as a replacement for real outside obstacles. Compared
to the real world obstacles they hold additional information such as, blocked arcs or
candidate vertices. The blocked arcs describe the parts of the circular arc which are
overlapping other obstacles. In figure 3.12 the blocked arc of the largest obstacle are
shown. The two each smaller obstacle overlaps a certain part of the circular arc. This
part is not a valid position for any vertices. The later calculated candidate vertices, as
well as their edge which lie inside these blocked arcs will be ignored and thrown away.
The mentioned candidate vertices hold the tangent point at each obstacle. The tangent

−4 −2 0 2 4

−2

0

2
blocked arc

blocked arc

Figure 3.12: Example of overlapping obstacles. The resulting blocked arcs of the
largest obstacle are marked in yellow.

points belong to all visible inner and outer tangents between all other obstacles. This
is done to reduce multiple similar calculations, later more. The candidate vertices as
well as the blocked arc field are initialized as empty lists. Extended obstacles should
represent the real world obstacles inside the graph but may be modified. The modifica-
tion is needed to handles several edge cases. Let A be an obstacle with an area which
includes the start vertex. This situation will result in an instantaneously termination of
the algorithm and no meaningful output. That maybe expected but in case of a soccer
game will lead to a standing robot, which is not good. These kind of situations need to

3.3 Design 31

−4 −2 0 2 4

−2

0

2

start

destination

obstacle A

shifted extended obstacle A

Figure 3.13: Example of shifted obstacle. Translation of the obstacle in direction of
closest circle boundary.

get handled in a way which do not harm or lead to any game disadvantage. They can
be detected before the algorithm starts. One approach could be to ignore the coursing
obstacle completely. But this will lead to no obstacle avoidance at all and potential
penalties calls by the referee. Another concept could be to move straight away from
the center of the obstacle until the outer obstacle edge is reached and then start the path
planning. This will lead to a major detour and hurt the game-play. A trade-off approach
is to move the obstacle instead. Moving the obstacle straight away from the start vertex
seems promising. The shift distance needs to be just long enough to let the start vertex
be a little outside of the obstacle. This shifting during initialization, results in a reason-
able trajectory as well as not sacrificing the important obstacle avoidance. Figure 3.13
shows such a situation including the original obstacle and its shifted extended version.
This approach introduces an additional edge case. If the shift process moves the obsta-
cle in a way that it will include the position of the destination one needs to adapt the
direction of the shift, one possible solution can be found in chapter 4. This approach is
used similar to handle the destination vertex as well.

3.3 Design 32

3.3.1.2 Blocked Areas

At the end of section 3.1, blocked ares got introduced. During initialization they should
not be handled the same way as the extended obstacles. In case a blocked area includes
start or destination vertices, different things need to be done. Assuming blocked areas
in real game situations, blocked areas cause a lot of different edge cases such as: the
start vertex lies inside of a blocked area and the destination not. The destination ver-
tex is inside but the start not. Both, start and destination are inside different blocked
areas. And start and destination vertices are inside the same blocked area. These need
be handles in a reasonable manner regarding the game. If the start and destination ver-
tices are located in different blocked areas, one can handle each on its on, independent.
Therefore the mentioned situations boil down to only three handling approaches: Start
inside of blocked area, destination inside of blocked area, both are inside of the same
blocked area. The following handling methods include tactic decisions made by and for
the Hulks team behavior and may not be suitable for everyone.
Blocked areas are needed to represent
certain game rules. For example the
illegal defender rule. In case of the start
vertex lying inside a blocked area, it
makes sense to try to get out as fast as
possible. Due to the fact that the referee
is encouraged to not call any penalty
if the robot’s intention is to leave the
area straight away. The behavior in such
a situation is to plan the path to route
through the closest blocking segment.
Figure 3.14 shows the final trajectory
of such a situation. In that case the left
edge of the rectangular blocked area gets
removed. This approach leads to a nice
trajectory. This deletion of blocked lines
is done during the graph initialization.
In case the destination lies inside of a
blocked area, a different approach need
to be used. The same approach using
deletion of blocked line can result in
a case where the final trajectory routes
deeper inside of the blocked area. Shown
in figure 3.15.

−3 −2 −1 0 1

−2

−1

0

start destination

Figure 3.14: Example of start vertex inside
of blocked area.

−3 −2 −1 0 1

−2

−1

0

start

destination

Figure 3.15: Example of destination vertex
inside of a blocked area with a obstacles us-
ing the deletion approach.

3.3 Design 33

The behavior shown in fig. 3.15 is very
bad considering the potential penalties
calls and the whole goal of this path plan-
ning approach. To get around this prob-
lem, the deletion approach needs tweaked
and several cases need to be caught. That
would add a lot of complexity implemen-
tation wise. A much simpler way was de-
veloped. Shifting the closest blocked line
instead of deleting it forces the path to
keep from going deeper inside. Keeping
the destination as the deepest of path go-
ing inside of the blocked area. The result
is shown in figure 3.16.

−3 −2 −1 0 1

−2

−1

0

start

destination

Figure 3.16: Example of destination vertex
inside of a blocked area with a obstacles us-
ing the shifting approach.

All of this needs to take place during the initialization of the graph.

3.3.1.3 Initialize Search

Initializing the search part of the algorithm is quite similar to the initialization process
of a A-Star search. It needs several data structures holding the current state of the search
algorithm, same as an A-Start search. Additional it needs an initialized instance of the
graph introduced before as well as a structure to hold the edge types to reconstruct the
correct trajectory. As shown in section 3.2.3. All fields are empty but the graph and
the queue. As mentioned above in section 3.3.1, the graph is initialized. The queue just
holds the start vertex.

3.3.2 The Search Loop
Please take note of section 2.2, before reading this section. After the initialization the
search loop starts. In the end the search has a ordered list, the open queue which holds
most promising vertices at first position. Every loop cycle the most promising vertex,
referred as current is checked if it is the destination vertex. If not it will take the current
vertex neighbors and will add them to open queue, if they are not already checked. The
whole search is illustrated with pseudo code at algorithm 3 on page 34.

3.3 Design 34

Algorithm 3 Plan the path, modified A-Star

1: function FINDPATH(Iv) → only input is the input vector Iv
2: # initialization
3: dest := Iv.destination
4: graph := Graph(Iv) → graph gets initialized, see sec. 3.3.1
5: open := PriorityQueue()
6: open.put(0, start) → put start vertex with priority 0 inside queue
7: while not open.empty() do → main loop start
8: current← open.get() → vertex with smallest f-score is current
9: if current ≡ dest then

10: return "Finished" → destination found
11: end if
12: for all neighbor ∈ graph.neighbors(current) do → see sec. 3.3.3
13: new_g_score := g_score[current] + cost(current, neighbor)
14: if (neighbor not visited) or (new_g_score < g_score[neighbor]) then
15: g_score[neighbor] = new_g
16: parent[neighbor] = current
17: f _score = new_g + heuristic(neighbor, dest)
18: # Normal A-Star would now add the neighbor to its open list
19: open.put(f _score, neighbor)
20: # try to optimize.
21: SkipIfPossible()
22: end if
23: end for
24: end while
25: end function

The first few lines show the initialization, described in section 3.3.1. At line 8 the
main loop starts which will cycle each vertex in the open list. If the destination vertex
dest is reached it will terminate instantaneously with a return "finished" call in line 10.
Otherwise it will grab all neighbors of the current vertex using the graph instance in
row 12 and cycle through all of them. For each of the neighbors a g-value is calculated,
line 13. It consists of the g-value of its parent, the current vertex, summed with the cost
of getting from current to itself.
The functionality of the cost function is separately shown in algorithm 4. It needs to
consider the type of edge between the vertices u and v. Therefore a simple euclidean
distance calculation is not enough. It needs to be distinguished which edge type needs
to be considered to calculate the correct cost. For detailed information see section 4.2.1
which some implementation details.

3.3 Design 35

Algorithm 4 The Cost Function
1: function COST(u: Vertex, v: Vertex)
2: if edge(v, u) ≡ "straight" then
3: # return the euclidean distance
4: else if edge(v, u) ≡ "CW " then
5: # return length of partial arc CW
6: else if edge(v, u) ≡ "CWW " then
7: # return length of partial arc CCW
8: end if
9: end function

Back to the search, algorithm 3. The search will only add vertices to the open list if
they are unknown, or more specifically not visited, and update them if new calculated
cost to each of them is lower than before. The lines 14→ 17 show that procedure includ-
ing updating all maps. Up to this line its similar to a normal A-Star graph search except
of creating the graph during run time. If one would use a normal A-Star approach, line
19 would the vertex the open list and then handle the next neighbor. Analyzing the
structure of the resulting graph and the way how neighbors are calculated, optimize the
cycle number of the search algorithm is possible.
Algorithm 5 shows the optimization. Instead inserting the neighbor vertex to the open
list, in some cases the neighbors pair vertex will get put inside of it. This rapidly de-
creases the number of search cycles.
First the neighbors vertex gets assigned to a local reference, pair, to create a better

Algorithm 5 SkipIfPossible, Can the pair vertex be added.
Require: Namespace of FindPath()

1: function SKIPIFPOSSIBLE

2: pair := pair of neighbor
3: if pair ≡ current then → todowas ist der pair vertex vom neighbor?
4: open.put(f _score, neighbor)
5: elsepair is a legit candidate
6: new_g_score := g_score[neighbor] + cost(neighbor, pair)
7: if (pair not visited) or (new_g_score < g_score[pair]) then
8: g_score[pair] = new_g
9: parent[pair] = neighbor

10: f _score = new_g + heuristic(pair, dest)
11: open.put(f _score, pair)
12: end if
13: end if
14: end function

3.3 Design 36

overview. Pair vertex is the same as current vertex implies that the neighbor vertex is
an endpoint of an edge which results in a normal A-Star behavior. In line 3 and 4 check
and represent that. But if the neighbor vertex is an starting point of an edge it will only
introduce one new possible unknown vertex, the corresponding endpoint of the edge.
If the pair vertex is not known or can be updated, line 7, then the graph gets updated.
Finally the pair vertex is put inside of the open list. This optimization results in a much
lower search cycle number, later shown in section 3.5.

3.3.3 Graph - Exploration of neighbors
This section shows how the underlying graph feeds the search algorithm with the needed
data. The graph structure has on obvious appearance in the search loop, see algorithm
3. The method neighbors is called in line 12 and returns a list of all neighbors of a given
vertex. Also in the cost function the graph needs to be used because only the graph
has the knowledge and therefore the capability of computing the correct cost. In this
way the graph structure is totally independent from the search algorithm. This implies
that the cost function used in line 6 of algorithm 5 needs to be handled by the graph
structure too. If the search algorithm needs the neighbors of a given vertex the graph
will calculate the needed vertices and return them inside of its neighbors method. The
functionality of the neighbors method depends on the type of the given vertices.

−4 −2 0 2 4

−2

0

2

start destination

Figure 3.17: Complex environment.

The neighbors of the given
vertex can already be known,
in case the search calls
neighbors with the same
given vertex multiple times.
The graph holds all prior
calculated edges. There-
fore it can just return them
without any calculations. In
case the required neighbors
are not known, the graph
needs to calculate their po-
sition. The calculation dif-
fers as mentioned above. It
depends on the given vertex
and its position. The simple

case is when the given vertex is not at an obstacle, therefore lies not on an arc of an ob-
stacle. This case handles the first cycle used of the shown approach. The preprocessing
shown on figure 3.13 and in the corresponding section 3.3.1 makes sure that the start
vertex is always not on an arc. Creating a list of neighbors of the start vertex is pretty

3.3 Design 37

easy and is already touched in section 3.1 and 3.2.2. First of all the direct path to the
destination vertex should be checked. If start and destination are connected right away
then no search needs to take place and the situation can be solved with a trivial solution.
Connected means if there is a line of sight between start and destination, which is not
interfering with any other obstacle. The list of neighbors would then only contain the
destination vertex, all other possible neighbor vertices get neglected for optimization.
Ignoring does not lead to an unwanted and incorrect behavior. In case the direct path
is blocked all neighbors need to be computed. In case of handling the start vertex, that
would be all visible tangent points at all obstacles of a line starting from the start vertex.
Figure 3.17 shows a good example of a scene with a complex environmental conditions.
The other situation is if the given vertex is an indeterminate location on the path. The
visibility approach implies that all intermediate vertices are located at an obstacle. In
that case all neighbors are only found at the sane obstacles as the given vertex as well as
one single remote point. The given vertex was calculated using a tangent. The remote
point is the vertex at the opposite side of the tangent edge. The other vertices, at the
same obstacle, are found by calculating all tangents to all other obstacles. For more
consult section 2.1. Only visible tangents are valid and the corresponding points are
added to the list of neighbors. Figure 3.18 illustrates such a intermediate vertex and its

−3.00 −2.25 −1.50 −0.75 0.00 0.75 1.50

−1.50

−0.75

0.00

0.75

1.50

Figure 3.18: Four obstacles. Intermediate vertex shown in purple
and it’s neighbors in yellow as well as the corresponding tangent
edges in red.

neighbors. The example has a slightly different setup as in figure 3.17. The top most
as well as the lowest obstacle were deleted, but the rest is similar. The four remaining
obstacles are shown. The purple dot represents the given vertex. The yellow dots are
the valid neighbors and the red lines show their corresponding tangent edge. The other
end of each tangent edge is the pair point of the neighbor. As mentioned all neighbors

3.3 Design 38

except of one are located at the same obstacle as the given vertex. The highlighted red
tangent edge connects the given vertex with its pair at the other obstacle. In this scenario
the neighbors call of the graph, given the purple vertex, will return all yellow marked
vertices with with their true costs.
Combining these cases into one single function could lead to a structure similar to algo-
rithm 6. The functionality is toughed in the following paragraph.

Algorithm 6 neighbors, returning neighbors of a given vertex.
Require: Initialized graph

1: function NEIGHBORS(v: Vertex)
2: neighbors:= empty list
3: if v not an intermediate vertex then → not at an obstacle
4: if destination vertex is visible then
5: append dest to neighbors
6: return neighbors
7: end if
8: for all obs ∈ obstacles do
9: calculate tangents to obs from v

10: if tangent points are valid then
11: append tangent point to neighbors
12: end if
13: end for
14: else → v is an intermediate vertex, located at an obstacle
15: obsv := obstacle at which v lies
16: if obsv is was not populated yet then
17: populate obsv → calculate all candidate vertices, see algo. 7
18: end if
19: for all candid ∈ candididates do
20: if candid is reachable then
21: append candid to neighbors
22: end if
23: end for
24: append pair vertex of v to neighbors
25: end if
26: return neighbors
27: end function

3.3 Design 39

Algorithm 7 populate obstacle, create the candidate vertices at a specific obstacle.
1: function POPULATE(o: Extended Obstacle)
2: find blocked arcs of o
3: compute tangent points between destination and o
4: if tangent points are visible then
5: add to candidate list of o
6: end if
7: for all obs ∈ obstacles\o do → all obstacles except of o
8: compute tangent points between o and obs
9: if tangent points are visible then

10: add to candidate list of o
11: end if
12: end for
13: end function

This paragraph will clarify the basic functionality of Algorithm 6 and explain the very
important if clauses in line 10 and 18. These two lines determine if a point gets added as
a vertex to the list of neighbors. As mentioned above the procedure differs if the given
vertex v is at an intermediate location or not.
The first part from 4→ 13 handles the case when v is not located at an obstacle. The
first if condition in line 4 handles a direct line of sight optimization. If the destination
is reachable, it will return early without any computation wasted for calculating the
other neighbors. This is only a valid optimization if the strict separation between graph
structure and the superior search algorithm is neglected. The for-loop in line 8 → 12
handles the other neighbors. The statement in line 9 provides the 2 tangent edges and
their 2 corresponding tangent points between v and the current obs. For each point the
if-clause in line 10 checks if it is valid. The term valid includes the visibility constrain
as well as the check if the tangent point is not inside of a blocked arc. Checking these
constrains is simpler than it seems. The visibility constrain includes the blocked arc
constrain. The visibility check is computational expensive but there is no way around
it, see section 3.3.4.
The second part from line 15 → 22 handle intermediate locations of vertex v. The
obstacle at v is referred as obsv. If obstacle obsv is not populated yet it gets populated.
To populate an obstacle means to compute all candidate vertices at that obstacle. This
is shown in algorithm 7 and done in a straight forward way. All candidate vertices are
determined by tangent edges between obsv and all other obstacles obs. Additionally the
destination vertex is used to create two tangents to the obstacle obs. All tangent edges
are put through a visibility check and then added to the list of candidate at obstacle obs.
In line 20 the list is used to determine all reachable candidates. Reachable in such a way
that no other obstacle is blocking the connection on the arc.

3.3 Design 40

−4 −3 −2 −1 0 1
−2

−1

0

1

start

destination

5

6

7 9

11

13

1

4

Figure 3.19: Neighborhood of vertex 4 represented in yellow as well as the blocking
arcs of the big obstacle. Candidate vertices shown in magenta with their corresponding
tangent edges and pair vertices illustrated with white lines and purple dots

Figure 3.19 illustrates an example showing the neighborhood of vertex 4 in yellow and
the candidate vertices of the large obstacle in magenta. The blocked parts of the arc are
highlighted in yellow as well. Line 24 of algorithm 6 then add the pair vertex also to the
returns neighborhood. That all should handle all cases of neighbor exploration and the
algorithm 6 is explained.
Now the graph structure is capable of feeding the search algorithm with reasonable data.

3.3.4 Visibility check
This sub section deals with the mentioned visibility check. Two vertices are intervisi-
ble on if the connecting line segments does not intersect with any obstacle of edge of
an blocked area. There exists very efficient methods to find intersection point of line
segments by sorting them in a smart way. These methods are based on the sweep tech-
nique. This procedure is often used in the algorithmic geometry. Such an algorithm
is also called a sweep algorithm. The core of a sweep is the sweep line. It is moved
through the entire space until all objects of the problem have been processed. A data
structure is used to store the objects touched by the sweep line. Such a data structure
is then called a sweep status structure. In general, a sweep converts an n-dimensional

3.3 Design 41

static problem into an (n−1)-dimensional dynamic problem.
Unfortunately the introduced approach, creating the graph on the fly can not be tackled
with that kind of method. Due to limiting the search space by not computing the whole
graph before hand.
The drawback is the necessity of checking every edge after computing it on visibility.
This is done in a straight forward manner. Thinking of a line segment in a space full of
obstacles. The line segment connects two points and represents the line of sight from
one to the other. If this line intersects with an obstacle the line of sight is blocked and
therefore the two points are not visible to each other. The environment consist of obsta-
cle as well as blocking lines. This brings the problem down to a line segment and circle
intersection problem.
Let v and w be two points in a two dimensional space and A the resulting line seg-
ment between them. Goal is to find out if these two points are visible to one another.
The obstacles are circles C = {c1,c2, . . .cn} containing position and radius as well as
Ls = {Ls1,Ls2, . . .Lsn} containing the other blocking line segments.

Theorem 1. Let Ic be the set of intersection points of circle c and line segment A. IC
can contain none, 1 or at most 2 points of intersection. Only if Ic contains 2 points an
intersection occurred.

The theorem 1 is based on the special use case while checking the visibility of two
points. In case the line of sight only touches the check circle Ic will contain 1 point of
intersection but the visibility still holds.
Next will be the line segments. This is done in a more simple manner. Due to the
fact that all end point of the blocking line segments are inside of other obstacles no
special cases of touching end points needs be handled. But the intersection detection
only needs to trigger if the line of sight crosses the blocking line segment. Touching is
fine and helps to avoid unnecessary fails during path planning.

−3 −2 −1 0 1 2
−2

−1

0

1

visiblevisible
blocked

Figure 3.20: Toughing edges are considered as visible.

3.4 Correctness 42

3.4 Correctness
The shown approach needs to perform correctly, it can not be used in the stated scenario
if it is not robust. As stated in [DB82] functional correctness can be checked in a straight
forward manner. For the introduced algorithm all possible input vectors need to result
in a reasonable output and therefore must produce usable trajectories. To distinguish
between correct and incorrect or useful or not, we need to state pre-conditions and the
corresponding post-condition. To simplify this process, the approach will be divided
into sequential parts. Each part will then be checked separately. If all parts fit in to each
other, the whole algorithm will produce the wanted output. If all slices are functional
correct the state transitions between them are robust. The following subsections will ex-
amine logical parts of the approach. Beginning with the initialization phase, the search
algorithm as well as the underlining graph logic needs to be checked.

3.4.1 Initialization
First of all the initialization is going to be inspected. The initialization phase prepares
the input vector and modifies the given environmental state to be suitable for the path
planning approach. The preconditions are simple. The input vector needs to provide
valid data. As mentioned in section 3.2.1, the input vector roughly consists of a lists of
circles, coordinated of locations and line segments. This data fields get filled outside of
the approach. In case of the HULKs framework different perception modules produce
these information and the path planning state a dependency.
The post condition should be a modified data set on which the rest of the approach
works. As shown in section 3.3.1 all cases are handled in a reasonable way and the
intended output gets generated.

3.4.2 The Search, modified A-Star
As shown, the solid A-Star search got modified in a way to add more vertices to the
open list as in the traditional implementation shown in section 2.2. The introduced
modification just adds functionality on top of the traditional approach. It just adds addi-
tional vertices to the open list and therefore does not touch any properties of the A-Star,
regarding correctness or completeness. Resulting in an optimal solution is also still
guaranteed. The correctness of the A-Star search algorithm depends on the used heuris-
tic. It needs to be at least admissible, which implies the property of underestimating or
predict exactly the real costs, as mentioned in [BCKO08]. The consistent property can
be neglected. So that the heuristic needs to fulfill the following equition, eq. 3.3. Let
g(x,y) be the real cost and h(x,y) the heuristic to location y starting from location x.

3.5 Complexity 43

Then the following must hold:

g(x)<= h(x), with x,y ∈ {all locations} (3.3)

To accomplish a directed search, the euclidean distance is used as heuristic in the intro-
duced approach. This is widely adapted and used in many navigation problem solved
with A-Star. Alternatives like the Manhattan distance or Diagonal distance make only
sense while using a grid type sampled environment. The used representation of the
world is accurate and does not use any sample technique which will lead to grid-like
world coordinates. Therefore, the euclidean distance is a promising heuristic. Another
way would be to design a special adapted heuristic. This could be further work to in-
troduce even more robot related information like a rotation penalty. As mentioned, the
properties of the heuristic control the A-Star search behavior. As the Euclidean distance
holds the required specifications the search part is correct.

3.4.3 The Graph
The graph part, explores and creates the graph on which search works on. The intro-
duced method creating the graph in section 7 and 6 grantees the correct graph. Worst
case would be that the whole graph needs to be generated and the maximal run-time
occurs. Using the whole graph for the search to work on, will result in a complete and
correct outcome. Therefore only the step by step creation needs to be checked more pre-
cisely. For each step all pre- and post-conditions are presented in the related sections.
All possible inputs result in the expected output and can be used to accomplish the goal
of finding the optimal path. As mentioned above the heuristic controls the behavior of
the whole approach. The heuristic and the cost calculation can be both handled by the
graph. Therefore, the graph has impact on the ordering inside of the search open list
and needs to work correctly. This is shown in the related sections as well.

3.5 Complexity
The complexity analysis is based on the implemented prototype code. Let n be the
number of obstacles including the added ones of the blocked areas. The initialization has
a linear proportional complexity ofO(n). During run-time, the tangent calculation adds
O(n!) and the expensive visibility checks additional O(n2). Due to the directed search,
the complexity of each run can be significant lower, only the worst situations will lead
to a large number of iterations. A statistically analysis shows promising results. 2500
different situations were generated and investigated. To restrict the random generated
situations to be more realistic following constrains were used. The start and the desired
destination location are more than 2.5m apart of each other. A total number of 9 obstacle
with a radius of 0.3m are place inside of the field dimensions with at least 0.3m distance.

3.5 Complexity 44

0 1 2 3 4 5 6 7 8
Algo iterations

0.0

0.2

0.4

Pr
ob

ab
ili

ty

Figure 3.21: Histogram, showing distribution of algorithm iterations of all 2500 simu-
lated situations.

The observed statistics are shown in table 5.1 and 3.1. This part will focus on the
number of function calls. A list of often called function is shown in table 3.1. The
search algorithm needs only 1.9 iterations to find the path to the destination. That
number seems pretty small. Looking at figure 3.21 shows a histogram of the iterations
regarding their occurrence probability. Nearly the half of the situations result in a trivial
problem, with no obstacle blocking the straight connection.
The table 3.1 shows mean of how often the specific function was called in each situation.

Table 3.1: Observed number of function calls, mean over all 2500 runs.

Function Calls/Per situation
1.8919 Search Algo. Iterations

18.2502 connected() calls.
0.7774 populate() calls.

34.4595 visible() calls.

Chapter 4: Implementation

This chapter describes parts of the code which can be found at https://github.com/
fwarmuth/tangentgraph. It is not research related in any mean, only for documen-
tation purpose. The list below gives a overview how the prototype implementation of
the approach introduced in chapter 3 took place. It is not a row by row explanation! It
is a selection of problems encountered during development. The following list gives an
overview of which parts and functions are explained in detail.

List of Code

1 Cost Function . 47
2 Connected Function . 48

4.1 Development Framework and Visualization
Before starting the development of the proposed path planning approach a development
framework was built. Due to the fact that debugging software running on a remote ma-
chine especially with very limited or close to no visual output is difficult and leads to
slow progress. The normal development framework of the HULKs include different
self-made debug options but introduce to much overhead for a proof of concept imple-
mentation. All development of the HULKs for the NAO is done in CPP with as less as
libaries as possible. CPP introduce a over head regarding graphical output. Therefore a
quick look beyond the end of the nose revealed Python as a fast and easy way to bring
some graphics to the screen. With Python it is fairly easy to create graphical output in a
just a view lines of code.
Initially Pygame was used to visualize the progress of the development. Later Mat-
plotlib was used to create the nice figures in this work.

45

https://github.com/fwarmuth/tangentgraph
https://github.com/fwarmuth/tangentgraph

4.2 Python Prototype Code Snippets 46

4.1.1 Pygame and Matplotlib
Pygame is an easy to use Python library for making graphical applications. Built on
top of the SDL, Simple DirectMedia Layer is a popular cross-platform development li-
brary. It was designed to provide easy access to input devices and to create graphics
with OpenGL. With help of a simple collection of wrapper functions the development
could begin.
Later On, a second interface was created. This time Mathplotlib was used, the MATLAB-
like plotting library can produces quality figures. But it introduced some problems as
specially the different widths of lines were problematic. Matplotlib sets the width of
lines in absolute pixels and not relative to the coordinate system. Therefore a 2 pixel
width line zoomed in is still 2 pixel wide. To overcome this problem a simple redraw
function is called depending on the zoom/size of the coordinate system. All figures in
this work were done using Matplotlib.

4.1.2 Networkx as a graph visualizer
During development, a graph visualizer was needed to illustrate the internal graph. Im-
plementing such thing from scratch is not needed. Networkx is a free Python library
regarding networks and graph-theory. It is very efficient and scales well. Only one fea-
tures was used, in combination with Matplotlib Networkx can plot networks. Figure
3.3, 3.5 and 3.7 are done using it. Also heavy debugging took place with this method to
visualize different graphs.

4.2 Python Prototype Code Snippets
This list shows selected implementation details and special function calls. They are
taken out of context and is not runable by copy and paste. The following code is short-
ened, error handling as wells some comments are removed compared to the production
code. This is necessary still be describable. The goal of this chapter is to show how the
edge case handling is done. Handling edge cases turned out to be very time consuming
and at least 30% of the total time was wasted here.

4.2.1 cost(u: Vertex, v: Vertex, edge_type: EdgeType)
The cost function resides inside the graph structure so it can work with the environment
properly. The cost between two vertices is the based on the euclidean distance between
them. The function expects two vertices, u and v as well an edge type. If both vertices
are located at the same obstacle, the direct connection is blocked. Therefore the edge
type between them is not straight. This switch case is handled in row number 2. Re-
turning the simple case in row 3. The challenge is computing the real cost between two

4.2 Python Prototype Code Snippets 47

points located on the arc of the obstacle. Its necessary to check if the two vertices are
not located at the same coordinates. For example 3 obstacles have tangent points in a
straight line. To avoid multiple paths with the same costs, the intermediate stops get a
small penalty shown in row 10. The direction of the circular edge is determined by the
connected function, see section 4.2.2. The rest is solved using basic geometry.

Code Snippet 1 Cost Function

1 def cost(self, u: Vertex, v: Vertex, edge_type: EdgeType):
2 if edge_type == EdgeType.STRAIGHT:
3 return norm(u.location - v.location)
4

5 # Give values better names
6 obstacle = self.obstacles[v.obstacle_id]
7 u_angle = m.angle_at_circle(u.location, obstacle.position)
8 v_angle = m.angle_at_circle(v.location, obstacle.position)
9 if u_angle == v_angle:

10 return np.finfo(float).eps
11

12 if edge_type == EdgeType.CCW:
13 if u_angle < v_angle:
14 return obstacle.radius * (v_angle - u_angle)
15 else:
16 return 2 * np.pi * obstacle.radius - obstacle.radius * (u_angle - v_angle)
17 elif edge_type == EdgeType.CW:
18 if u_angle < v_angle:
19 return 2 * np.pi * obstacle.radius - obstacle.radius * (v_angle - u_angle)
20 else:
21 return obstacle.radius * (u_angle - v_angle)
22

23 raise RuntimeError("Unknown edge type!")

4.2.2 connected(u: Vertex, v: Vertex)
The connected function tackles the reachability constrain described and shown in figure
3.19 on page 40. The goal is to find an arc on the perimeter of the obstacle which is not
blocked by anything. It expects two vertices located at the same obstacle and returns a
tuple consisting of a connected flag and a direction indicator.
An obstacle can have multiple blocked arcs and therefore an iteration over the whole
set of arcs is necessary. The function is designed in a typical manner, starting with the
assumption that both arcs between the vertices are free and usable, than checking each
blocked arc. First the angle of each vertex regarding the X-Axis and the center of the
obstacle is calculated, as shown in row 7 and 8. First step of the loop is to try to return

4.2 Python Prototype Code Snippets 48

Figure 4.1: List of possible scenarios. Showing the value range and their relative value
of the angles and the reasoning of each case.

-PI 0 PI
1 - |----V----U----S::::::::E----(V---U)----|, U -> V is blocked (CCW)
2 - |----U----V----S::::::::E----(U---V)----|, V -> U is blocked (CW)
3 - |-------V------S::::::::E-------U-------|, V -> U is blocked (CW)
4 - |-------U------S::::::::E-------V-------|, U -> V is blocked (CCW)
5 - |::::E---------U--------V----------S::::|, V -> U is blocked (CW)
6 - |::::E---------V--------U----------S::::|, V -> U is blocked (CCW)

early, without iterating over all blocked arc. In case any of the two vertices lie inside a
blocked arc or both directions are blocked the function returns, see row 13 to 15. Than
a large switch case covers all situations. The vertex angles as well as the arc start and
end lie in an interval of [−pi, pi) by definition. Let V and U be the angles of the two
vertices. S::::E represents the range of the blocked arc, from S to E. As mentioned
all values can only be in [−pi, pi), carrying these values on a scale using a simple code
style results in figure 4.1. Illustrating all possible scenarios. This cases get handled in
row 17 to 30. The last part of the code, starting at row 32, constructs the desired output
form and in case of no blockage selects the shortest way around the obstacle.

4.2 Python Prototype Code Snippets 49

Code Snippet 2 Connected Function

1 def connected(self, u: Vertex, v: Vertex):
2 # math_negative and math_positive hold the state of
3 # the both possible ways along the circlular egde (arc)
4 math_negative = True
5 math_positive = True
6

7 obstacle = self.obstacles[u.obstacle_id]
8 angle_v1 = m.angle_at_circle(u.location, obstacle.position)
9 angle_v2 = m.angle_at_circle(v.location, obstacle.position)

10

11 if obstacle.blocked_arcs:
12 for arc in obstacle.blocked_arcs:
13 if m.point_inside_arc(u.location, arc) or m.point_inside_arc(v.location, arc)\
14 or (not math_negative and not math_positive):
15 return False, None
16

17 if arc.start_angle < arc.end_angle:
18 if angle_u < angle_v < arc.start_angle or arc.end_angle < angle_u < angle_v:
19 math_negative = False
20 elif angle_v < angle_u < arc.start_angle or arc.end_angle < angle_v < angle_u:
21 math_positive = False
22 elif angle_u < arc.start_angle and arc.end_angle < angle_v:
23 math_positive = False
24 elif angle_v < arc.start_angle and arc.end_angle < angle_u:
25 math_negative = False
26 else:
27 if angle_u < angle_v:
28 math_negative = False
29 else:
30 math_positive = False
31

32 if math_positive or math_negative:
33 delta = np.arctan2(np.sin(angle_v - angle_u), np.cos(angle_v - angle_u))
34

35 if delta >= 0:
36 if math_positive:
37 return math_positive, EdgeType.CCW
38 else:
39 return math_negative, EdgeType.CW
40 else:
41 if math_negative:
42 return math_negative, EdgeType.CW
43 else:
44 return math_positive, EdgeType.CCW
45 else:
46 return False, None

Chapter 5: Evaluation

Evaluating path planning approaches is challenging. As shown in the introduction sec-
tion 1.4, different strategies have been proposed in the last decades. Each uses a differ-
ent approaches to face the path planning problem. Comparing the resulting path can be
an approach to evaluate different strategies, by taking a closer look, it turns out not to
be. The performance term can only be concise regarding a specific application. Some
methods are very quick run-time wise but will never find the optimal path. Some need
a lot of computational iterations and are hard to implement. But most important are
the requirements specific to the application in which the approach is used. In case of
RoboCup competition, running against time and avoid penalty rules.
The testing section will compare selected approaches with the approach proposed in
chapter 3 regarding the challenging requirements in a SPL match.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

start
destination

start
destination

Figure 5.1: Showing the only resulting path using the proposed approach applied on
the case study.

50

5.1 Comparison 51

5.1 Comparison
The here proposed path planning approach is discussed in the light of the given RoboCup
SPL competition application. During the match, a robot needs to move quick and avoid
collision with obstacles. The specific requirements are proposed and listed in section
1.5. And can be summarized in the following major aspects:

• Short Path - no unnecessary detours, optimal path in distance and time.

• Collision Avoidance - minimize chance of collisions/penalties.

• Smooth Trajectory - resulting trajectories should be easily to follow, considering
the robot capabilities.

In this section the introduced existing approaches, see section 1.3, are compared based
on a case study. Many different situations can occur during a soccer match. The case
study is reduced to a single situation. Obviously one single case can not prove much
and cannot represent all challenges in path planning, but it can help to highlight and
clarify drawbacks and benefits of each method. A well defined standard situation is al-
ways necessary when comparing behavior and should be constant. Figure 5.1 shows a
random static game situation as well as the reference path computed with the proposed
approach. The number of obstacles is 9 and is selected to represent the maximum num-
ber of robots on the field during a game. Including the advanced blocked areas has no
additional effect on the approaches and is therefore neglected.
The probabilistic road map (PRM) approach described in section 1.4.1 violates two of

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

start
destination

start
destination

Figure 5.2: Showing a resulting path of PRM applied on the case study.

5.1 Comparison 52

the required aspects. PRM is not able to find the optimal path in a deterministic fash-
ion. Due to its probabilistic method to sample the environment ts unlikely to find the
optimal path. Also the found paths could include major detours. Figure 5.2 shows an
example solution found by the PRM approach. The first part of the path seems legit,
the 2nd part also looks not to much off of the reference path. But the last two straights
are introducing such an expensive detour. Not only regarding the length also the sharp
corners are bad for the robots motion. The robot will need to stop completely and turn
on spot to follow that trajectory, which will consume a long time to reach the destina-
tion. Another drawback compared to the proposed approach is the non-deterministic
behavior of PRM. Every time PRM will sample the free space differently. As men-
tioned before, the PRM approach can be modified to a deterministic sample technique
to achieve consistent path planning results but regarding the application it’s results are
out performed beaten by the proposed approach. Looking into detail about PRM can
be reduced to three challenges. Connecting neighboring points, collision checking and
sampling method. PRM is probabilistic complete. When sampling very often the graph
will contain a solution. Drawback in the details would be that the graph is not con-
structed with the path in mind. Leading to worthless nodes in the graph bringing no
benefit.
The next presented approach is based on Rapidly Explore Random Trees (RRT). As
mentioned in the overview section 1.4.2, the key aspect is to construct a graph by gen-
erating next possible states in the free space using random controls. The graph delivers
a tree topology. This method was not implemented and cannot be compared face to
face. Also this method can be tweaked by optimizing selected parameter and therefore
is not meant to be compared in numbers. But still statements regarding the performance
can be made. The execution of random controls in RTT lead to no specific coverage
of the free space. It has the advantage to directly include the movement constrains of
the robot. RTT is often used in automobile path planning because it can represent the
movement limitation very well. Including this in the proposed approach will increase
the complexity but still be feasible.

−4 −2 0 2 4 −3
−2
−1

0
1

2
3

Figure 5.3: Potential Field illustrating the
reference situation.

The current method used by the HULKs
is based on a potential field. The attrac-
tive force pulls the robot towards its des-
tination whereas obstacles introduce a re-
pulsive force distracting the robot. The
reference situation using some reasonable
intensity of the attractive and repulsive
forces is illustrated in figure 5.3. Due to
the many obstacles, the field is crowded,
in part, the influence radius of the obsta-
cle overlap and add up. This behavior is

5.1 Comparison 53

not wanted at all and can lead to blocking a passage which is actually wide enough.
The HULKs implementation uses the potential field to modify its desired movement
vector.The movement vector initially points towards the desired destination and is used
to calculate the next foot step. Depending on the location of the robot, the movement
vector gets rotated away from obstacles introducing a collision avoidance. The attrac-
tive force is represented by setting the initial direction of the movement vector towards
the desired destination. The strength of the repulsive forces is tweaked in such a way so
that it performs well in most situations. Figure 5.4 shows the top view of the potentials
on the reference situation.
The contour lines are drawn in black and the gradient in color goes from red to black

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

start destination

Figure 5.4: Top view of the reference situation with repulsive potential field and it’s
contour lines-

but due to the underlying green of the soccer field the colors are inaccurate. There the
problematic passage blocking behavior can be seen in two examples. As soon as two
obstacles are close enough to each other, the gap between them gets filled up, so that the
field’s gradient gets squeezed out. Another major faulty behavior is seen at the destina-
tion. The destination is not at the lowest point of the field, due to the obstacle next to it.
This can imply that the robot will not find any path exactly terminated at the destination.
This needs to be handled separately but still will introduce unwanted detours. Last but
not least, in this case the optimal path is not found.
Neglecting the visibility graph approach in the evaluation was a conscious decision and
is justified by the problematic implementation of circular obstacle and vice versa. With-
out any further work-around it cannot be adapted to run in the used framework. The
same argument applies to the RRTs implementation.

5.2 Testing 54

5.2 Testing

Beeline vs planned path, means.
4.0793 m Euclidean distance between start and destination.
4.1293 m Distance of planned of trajectory.

Table 5.1: Distance between start and destination compared with the final planned
path.

In table 5.1 the beeline length, without obstacle avoidance, is compared to the length
of the planned path. Due to the situation design the mean is around 4 m but most
important, the planned path is not having a massive impact on the distance. At least
over the mean. Obviously this is not true for all cases.

Chapter 6: Conclusion and Outlook

The final chapter will summarize the findings of this work. A short outlook on the fu-
ture work and further improvements regarding the presented approach can be found in
section 6.1.
A entire rework of the a path planning method for the NAO robot focusing on chal-
lenges faced in the RoboCup SPL was done. The recent world championship results
and statistics were analyzed and used to find problems and weaknesses during partic-
ipated matches of the team HULKs. Obvious problem of team HULKs considering
the other Top4 world wide teams were the faced time penalties caused by insufficient
obstacle avoidance. To tackle that weakness, other existing approaches with collision
avoidance were investigated. The outlined challenges and requirements were used to
evaluate and compare these against each other. Three main requirements were pointed
out: 1. Minimized length of path. Reducing the travel time as well avoid the wear and
tear of joints. 2. Collision avoidance to reduce time penalties. 3. Smooth trajectory
avoiding corners and slow turns on point with no progress in distance. After detailed
information about A-Star and tangent computation, the visibility graph based concept
of a specialized path planning method was developed.
Main feature of the proposed approach is the way it constructs the graph. Other ap-
proaches build up the graph first and then use a search algorithm to find the shortest
path between two nodes. In contrast, the developed approach is combining these two
steps by using an informed graph search to only construct promising parts of the graph.
The search is based on a slightly modified A-Star algorithm. Obstacles are represented
in circle form. Introducing other shapes like lines and rectangular can still be used to
implement forbidden areas. Some edge cases like starting in an obstacle or enclosed
obstacle are handled correctly. The construction of the graph is based on the model
of the visibility graph and therefore grantees a good obstacle avoidance. The minimal
path length is also implied by the used of visibility properties considering the triangle
inequality. The resulting path consists only of straight line segments and circular partial
arcs leading around the obstacles.
The 2nd part of this work covers the implementation. Firstly a visualization and de-
bug framework was implemented. Due to good and easy to use visualization libraries,
such as PyGame and the later used Matplotlib Python was used for framework devel-

55

6.1 Further Work 56

opment. The prototype implementation was also done in Python. To compare methods,
the Probabilistic Road Map approach as well as parts of the currently used potential
field approach were implemented. The results show that the proposed approach fulfills
the stated requirements and can be used on the robot. Unfortunately it is only a proof-
of-concept prototype, and no port to the robot is done yet. The final implementation is
still pending.

6.1 Further Work
The proposed and exercised approach of a guided path searching delivered promising
results. But there is still room for further investigation and chances for improvements.
The results promise a good way of avoiding obstacles and finding the shortest path. As
an extension the most recent history of the environment could be taken in account as a
guess if and how the obstacle may move on, for the next iteration. The proposed method
has its strengths in avoiding stationary obstacle, reacting on changes in the environment
is handled by computing a path as often as possible. By using state information, move-
ment of obstacles could be used to estimate position changes of obstacles. To include
such movement information in the approach can be done by deforming the obstacle’s
shape regarding the assumed movement. Deformation could depend on the distance
from the navigating robot to the obstacle considering the time until the robot will get
closer. Therefore the overall approach doesn’t need to change critically.
Another point of refinement could be the cost function used during search. So far the
cost factor takes only the distance of the path into account, considering additional fac-
tors could improve the resulting path. Analyzing the real walking speed of the robot
following different sized partial arcs and straights can give insight when it makes sense
to take a longer path instead of a lot of narrow arcs.

Bibliography

[AAG+85] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility-
polygon search and euclidean shortest paths. In Proc. 26th Annual Symp.
Foundations of Computer Science (sfcs 1985), pages 155–164, October
1985.

[BCKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-Verlag
TELOS, Santa Clara, CA, USA, 3rd ed. edition, 2008.

[Com18a] RoboCup Technical Committee. Robocup standard platform league (nao)
rule book, 2018.

[Com18b] Standard Platform League Technical Committee. Game controller statistics,
2018.

[DB82] Douglas D. Dunlop and Victor R. Basili. A comparative analysis of func-
tional correctness. A Comparative Analysis of Functional Correctness,
14:229–244, 1982.

[GM87] S. K. Ghosh and D. M. Mount. An output sensitive algorithm for computing
visibility graphs. In Proc. 28th Annual Symp. Foundations of Computer
Science (sfcs 1987), pages 11–19, October 1987.

[GO04] Roland Geraerts and Mark H Overmars. A comparative study of proba-
bilistic roadmap planners. In Algorithmic Foundations of Robotics V, pages
43–57. Springer, 2004.

[GSB14] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible
ellipsoidal heuristic. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, pages 2997–3004, September 2014.

[HNR72] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. pages 28–29, 1972.

57

Bibliography 58

[HS99] John Hershberger and Subhash Suri. An optimal algorithm for euclidean
shortest paths in the plane. SIAM Journal on Computing, 28(6):2215–2256,
1999.

[JW10] Qian Jia and Xingsong Wang. An improved potential field method for path
planning. In Proc. Chinese Control and Decision Conf, pages 2265–2270,
May 2010.

[KUT18] W. Khaksar, M. Z. Uddin, and J. Torresen. Incremental adaptive proba-
bilistic roadmaps for mobile robot navigation under uncertain condition.
In Proc. Computing Science and Automatic Control (CCE) 2018 15th Int.
Conf. Electrical Engineering, pages 1–6, September 2018.

[LK99] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In
Proc. IEEE Int. Conf. Robotics and Automation (Cat. No.99CH36288C),
volume 1, pages 473–479 vol.1, May 1999.

[NRH15] Kourosh Naderi, Joose Rajamäki, and Perttu Hämäläinen. Rt-rrt*: a real-
time path planning algorithm based on rrt. In Proceedings of the 8th ACM
SIGGRAPH Conference on Motion in Games, pages 113–118. ACM, 2015.

[QMI+14] A. H. Qureshi, S. Mumtaz, K. F. Iqbal, Y. Ayaz, M. S. Muhammad,
O. Hasan, W. Y. Kim, and M. Ra. Triangular geometry based optimal mo-
tion planning using rrt*-motion planner. In Proc. IEEE 13th Int. Workshop
Advanced Motion Control (AMC), pages 380–385, March 2014.

[RId88] N. S. V. Rao, S. S. Iyengar, and G. deSaussure. The visit problem: visibility
graph-based solution. In Proc. IEEE Int. Conf. Robotics and Automation,
pages 1650–1655 vol.3, April 1988.

[SGS17] P. Sudhakara, V. Ganapathy, and K. Sundaran. Probabilistic roadmaps-
spline based trajectory planning for wheeled mobile robot. In Proc. Data
Analytics and Soft Computing (ICECDS) 2017 Int. Conf. Energy, Commu-
nication, pages 3579–3583, August 2017.

[SS15] S. Spanogianopoulos and K. Sirlantzis. Non-holonomic path planning of
car-like robot using rrt*fn. In Proc. 12th Int. Conf. Ubiquitous Robots and
Ambient Intelligence (URAI), pages 53–57, October 2015.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Scope
	Path Planning Concept and Terminology
	Existing approaches
	Probabilistic Road Maps
	Rapidly Exploring Random Trees
	Visibility Graph
	Potential Field

	Requirements

	Prerequisites
	Calculation of Tangents
	A-Star Graph Search (A*)
	Heuristic control

	Algorithm
	Basic Concept
	Data-types
	Input-Vector
	Graph
	Search Algorithm
	Output, the trajectory

	Design
	Initialization
	The Search Loop
	Graph - Exploration of neighbors
	Visibility check

	Correctness
	Initialization
	The Search, modified A-Star
	The Graph

	Complexity

	Implementation
	List of Code Snippets
	Development Framework and Visualization
	Pygame and Matplotlib
	Networkx as a graph visualizer

	Python Prototype Code Snippets
	pythoncost(u: Vertex, v: Vertex, edgetype: EdgeType)
	pythonconnected(u: Vertex, v: Vertex)

	Evaluation
	Comparison
	Testing

	Conclusion and Outlook
	Further Work

	Bibliography

