
Technische Universität Hamburg-Harburg
Vision Systems

Prof. Dr.-Ing. R.-R. Grigat

Machine Learning in Context of
Robot Soccer on the Humanoid

Nao Robotic System

Project Thesis

Malte Erik Schröder

January 29, 2016

Contents

List of Figures iii

List of Tables vi

1 Introduction 1
1.1 The NAO . 1
1.2 RoboCup . 2
1.3 Motivation . 2
1.4 Aim of this Thesis . 3

2 The Data 4
2.1 Requirements . 4
2.2 The Set Size . 6
2.3 Ground Truth . 7
2.4 Database . 7
2.5 K-fold Cross-Validation . 9

3 Image Analysis 10
3.1 Colorspace . 10
3.2 Color Segmentation . 11

3.2.1 Field Color . 11
3.2.2 Robot Color . 13
3.2.3 Ball Color . 15
3.2.4 Line Color . 17
3.2.5 Goal Color . 19
3.2.6 Conclusion . 22

4 Machine Learning 24
4.1 K-means Clustering . 25

4.1.1 Identifying the Cluster . 26

i

Contents ii

4.1.2 Loss Function . 27
4.1.3 Results . 27
4.1.4 Discussion . 30

4.2 Artifical Neural Network . 31
4.2.1 Bias Neurons . 34
4.2.2 Training . 34
4.2.3 Determining the Topology 36
4.2.4 Discussion . 38

4.3 Support Vector Machines . 39
4.3.1 The Kernel Trick . 41
4.3.2 Multiple Classes . 43
4.3.3 Determining the parameter 43
4.3.4 Discussion . 44

5 Conclusion 47

6 Outlook 48

7 Appendix A 49

List of Figures

1.1 Overview about the cameras of the NAO [Alda] 1

2.1 An example JSON file, which is used to store the position of the
objects, that can be seen in the image 7

2.2 An image of a line with the belonging pixel mask 8

3.1 Comparison of the CbCr plane for different Y values 11
3.2 (a) The field is framed by a yellow wall. (b) The green as a

blueish tone. (c) A lot of people watching the game from behind
the goal. (d) A white fence separates the audience and the field. 12

3.3 All green pixels . 13
3.4 YCbCr Histogram over 16 field images 14
3.5 Pixel density plots of the YCbCr colorspace. Figure (a) shows

the CbCr plane. The majority of the pixels are in the bottom left
quarter. The maximum is in the middle at the point (128,128).
The reason for that can be seen in the figures (b) and (c), which
show the pixel density in the YCr- and YCb-plane of the col-
orspace. If the Y-channel becomes low, the Cb and Cr values
shift through 128. 14

3.6 All robot pixels . 15
3.7 YCbCr Histogram over 256 robot images 16
3.8 The pixel density shown in figure (a) is very centralized. Only

a few pixels are arranged around the center. Figure (b) shows
that the robotcolor is mostly below 128. The Cb Values are dis-
tributed around 128 along the Y axis. 16

3.9 All ball pixels . 17
3.10YCbCr Histogram over 336 ball images 18

iii

List of Figures iv

3.11The distribution of the red ball pixels in figure (a) shows a very
individual pattern in comparison to the other and are almost all
in the upper left quadrant. Figure (b) shows two peaks at the
same Y Value. The rest of the pixels are arranged in some sort
of "v-shape". The Cb value in figure (c) seems to be proportional
to the Y-channel. 18

3.12All line pixels . 19
3.13YCbCr Histogram over 81 line images 20
3.14The linecolor is mainly white, therefore the majority of the pix-

els have an Cb and Cr values of 128 and the Y value is higher
than in the other classes. One thing, that is noticeable here, is
,that there are two separate accumulations. Therefore the im-
ages must be taken from at least two fields with very different
conditions. Figure 3.12 shows also two different color classes.
It appears to be, that the surrounding field color has a big influ-
ence on how the linecolor is perceived. 20

3.15All goal-pixels . 21
3.16YCbCr Histogram over 14 goal images 21
3.17The distribution of the goal-pixels is more concentrated as the

linecolor. One reason for that might be the small amount of
images, that was available. But nonetheless the center of the
distribution of the goalcolor has a lower Cb-value and the Cr-
value is above 128. The figures (b) and (c) show also a more
concentrated distribution, which also might be the result of the
small data set . 22

3.18The Boundaries of each pixel class plotted in the three different
YCbCr planes. The two biggest classes are the the field and
the robot class. They are also very similar. The reason for that
is probably the high label noise in the robot training data. It
should be noted that these plots take all pixels into account and
don’t consider the density of the given classes. 23

4.1 Figure (a) shows the result of the K-means clustering algorithm
for the under-sampled data set. Figure (b) shows the correct
classification for this data set. 31

4.2 Figure (a) shows a neural network with three input (1, 2 and 3)
and two output neurons (4 and 5). The network in figure (b) has
an additional hidden layer (neuron 4 and 5) and only one output
neuron (6) . 32

List of Figures v

4.3 A plot of the sigmoid function, which is used as the activation
function g(x) . 33

4.4 A mathematical representation of a neuron. 33
4.5 The neural networks from figure 4.2 with bias neurons in the

input and hidden layer . 35
4.6 Runtime of a neural network with one hidden layer 36
4.7 The Mean squared Error for a neural network with one hid-

den layer dependent on the number of neurons for the under-
sampled data set. 37

4.8 The Mean squared Error for a neural network with one hid-
den layer dependent on the number of neurons for the under-
sampled data set. 38

4.9 The margin between the two classes is defined by the red hy-
perplane . 40

4.10The results of the different SVMs 46

7.1 Different Carpets with high illumination 50
7.2 Different Carpets with normal illumination 52
7.3 Carpet with low illumination . 54

List of Tables

2.1 Overview over the images in the database 8
2.2 The number of mega-pixels in each set for different sample mech-

anisms . 9

4.1 The error rate for the K-means clustering algorithm for the un-
sampled training set . 28

4.2 The YCbCr coordinates for the best classifier for unsampled data 28
4.3 The error rate for the K-means clustering algorithm for the under-

sampled training set . 29
4.4 The YCbCr coordinates for the best classifier for under-sampled

data . 29
4.5 The error rate for the K-means clustering algorithm for the over-

sampled training set . 30
4.6 The YCbCr coordinates for the best classifier for over-sampled

data . 30
4.7 Execution times for a network with two hidden layer 37
4.8 The runtime of support vector machines with three different ker-

nels for 10/50/100 support vectors 44
4.9 The results for a support vector machine with linear kernel func-

tion . 44
4.10Results for support vector machines with different kernel func-

tions . 45

vi

Author’s Declaration

I solemnly declare that I have written this thesis independently, and that i
have not made use of any aid other than those acknowledged in this thesis.
Neither this research paper, nor any other similar work, has been previously
submitted to any examination board.

Hamburg, January 29, 2016 Erik Schröder

1

Chapter 1

Introduction

This thesis is written within the robot soccer team of the TUHH, the "Ham-
burg Ultra Legendary Kickers" or "HULKS". The used robot platform and
details about the RoboCup, the event that the HULKs compete in, are intro-
duced in the following section.

1.1 The NAO

The NAO robotic platform is manufactured by the french corporation Alde-
baran. It is a humanoid robot with a height of 57.3 cm and a weight of 5.2
kg. As a CPU an Intel ATOM Z530 with 1.6 GHz clock speed is used. It can
make use of 1GB RAM and has two cameras. One that looks straight ahead
and the other one is used to observe the ground in front of the feet of the
NAO. Both cameras have a resolution of 1280x960 pixel and can deliver a
maximum frame rate of 30 fps [Aldb]. Figure 1.1 gives an overview about
the positions of the two cameras.

Figure 1.1: Overview about the cameras of the NAO [Alda]

1

1.2 RoboCup 2

1.2 RoboCup

The RoboCup is a competition for robots and artificial intelligence. The ob-
jective of the RoboCup is, to provide a motiviation for engineers and scien-
tists in their work. The first RoboCup took part in 1997. Since then a lot of
different competitions have been added to the RoboCup:

RoboCup Soccer
Soccer was the original competition in the RoboCup. The teams com-
pete in different leagues. There are leagues for humanoid robots, robots
on wheels or simulation. The HULKs take part in the Standard Platform
League (SPL). In this league it is not allowed to modify the hardware
and all teams have to use the NAO robot. The main goal is to beat the
current human FIFA world champion in 2050.

RoboCup Rescue
The rescue league simulates catastrophic scenarios. The teams build
robots that have to find casualties and provide first aid or rescue them.
The robots are either controlled or they are working autonomously.

RoboCup@home
The RoboCup@home aims to develop robots that are able to execute
various tasks in a home environment. For example they have to be able
to get something out of the fridge or assisting people with getting their
pills . A key challenge is the human-robot interaction.

RoboCupJunior
This competition is for children. The children compete in three differ-
ent challenges. The Soccer Challenge, Dance Challenge and Rescue
Challenge. It is meant to introduce children to robotics and technology.

Logistics League
The Logistics League tries to automate industrial processes. The robots
have to provide resources at the right time at the right place to perform
an efficient production chain.

1.3 Motivation

The current approach, that is used for image processing, is completely ana-
lytically. There exist different modules which are dedicated to a certain task.

1.4 Aim of this Thesis 3

These modules mostly depend on the results of their predecessors, which
reduces the computational complexity of some tasks (e.g. the ball detection
module doesn’t have to search the whole image and iterates only through
the field, if the field border detection provides this information). The dis-
advantage of this vision pipeline is, that the errors of all modules add up
and therefore lead to a very high number of false detections. This approach
produces very unreliable output and a lot of calibration and parameter ad-
justment has to be done to apply it to different environmental conditions.
It is hard to face these problems only with analytical methods. Another ap-
proach would be useful. Therefore a machine learning approach is evaluated
in this thesis.

1.4 Aim of this Thesis

As mentioned before in section 1.3, the analytical approach has it’s limits
regarding the generalization and applicability. It is expected, that a machine
learning approach promises better outcomes. Therefore different algorithms
and methods should be evaluated in this thesis. The main issue about this
topic is the high number of different methods and variations. It would ex-
ceed the limits of this thesis to consider all of them. To reduce the number
of possibilities, this thesis will focus on a pixel based approach. A pixel is the
smallest possible unit in an image and is therefore a reasonable start to begin
with evaluating machine learning, because the training as well as the execu-
tion time will be small in comparison to more sophisticated approaches. The
first part of this thesis will consider how a database has to be constructed
and how the data has to be prepared, to make it usable for machine learning.
In the second part an analysis of the data will be provided and finally in the
third part different algorithms will be implemented and tested.

Chapter 2

The Data

For machine learning tasks it is mandatory to gather, understand and pre-
pare the data [WFH11]. Therefore, this chapter discusses what is important
to create a database of images, that can be used either for the evaluation as
well as for the training of different machine learning methods.

2.1 Requirements

The topic, that is discussed here, is image processing. Therefore it is obvi-
ous that the initial data input for all operations are images. The important
point is what these images shall contain. To specify details for the images,
it might be convenient to start at a higher level. What requirements should
the machine learning method meet in the end ? The most important points
are:

1. Noise resistance

2. Lighting independence

3. As few false positives as possible

4. Model transfer

5. Object recognition

The first point is obvious and is required in nearly all machine learning
tasks. Point 2. aims on the different lighting conditions, which appear during
the games. Even during one game the lighting conditions might change. This
results in very unreliable results with an analytical approach. Therefore, a

4

2.1 Requirements 5

high robustness and independence from the environment is required.
A special focus lies upon the points 3. and 4. The modules, that depend on
the information from the image processing, are currently very sensitive to
false positives. For example, if the goal keeper sees a ball in front of him,
he immediately jumps and tries to save the ball. After the robot fell down,
he likely looses orientation and it needs time until he is back in the game.
This can result in a major disadvantage for the team. Therefore the false
positive rate should be as low as possible or at least a confidence measure
should be introduced. The fourth point, model transfer, means that it should
be possible to copy the classifiers or algorithms after the learning phase to
all robots. This would reduce the time and effort for deployment drastically,
because the training of certain classifiers may consume a lot of time. The
fifth point is also obvious. Of course the images shall include all the objects,
that the algorithm shall detect.
Based on those basic requirements, it is now possible to break them down to
more specific ones:

1. Noise Resistance

(a) Images shall be taken with different camera parameters
(gain, saturation, etc.)

2. Lighting Independence

(a) Images shall be taken under different lighting conditions

i. Different intensity levels

ii. Different light sources with different spectrum and frequency

3. As few false positives as possible

(a) Include images that can lead to false positives

i. Other robots (with and without jerseys)

ii. Items besides the field

iii. Include images that are taken during movement

4. Model transfer

(a) Include images from different robots

5. Object recognition

2.2 The Set Size 6

(a) Include images of the following objects with variations in position
and orientation

i. Ball

ii. Goal

iii. Field

iv. Line

v. Robot

For the training set is is important, that it contains only one object of
interest at the time. Even though there are training methods, that can teach
an algorithm more than one object at the time, a disjoint training set can be
applied for a wider range of training methods.

2.2 The Set Size

Another important point in machine learning is the size of the training set.
There are several different public data sets, which are frequently used in
papers and publications to evaluate algorithms and make the results compa-
rable. Some data sets, that contain images, are quickly described below:

CIFAR-10/100 [Kri]
The CIFAR-10 dataset consists of 60000 32x32 color images divided in
10 classes with 6000 images each.
The CIFAR-100 dataset is very similar to the CIFAR-10 dataset. The
difference is that it contains 20 superclasses, where each of them is
divided in another 5 subclasses. Which makes 100 classese in total.

MNIST Database [Mni]
The MNIST Database of handwritten digits is a collection of 60000
training sets. The database is structured in 2 files. The first file con-
tains all the labels, which indicate the ground truth, and the second file
contains all the images.

It can be seen that a high number of images for a machine learning task
is desirable. Unfortunately, there is no standard image database for robot
soccer images yet. However, some of the SPL Teams have published their
image datasets, so that these sets can be used for this thesis. But even with
these images the size of the dataset can not reach the quantity of those listed

2.3 Ground Truth 7

1 {
2 "ball": [180,366,65,67]
3 }

Figure 2.1: An example JSON file, which is used to store the position of the
objects, that can be seen in the image

above. This should be kept in mind for the further evaluation
To ensure that the learning algorithms work properly in a real environment,
most images will be taken from real in-game data. Even if the in-game im-
ages provide realistic data, it might be convenient to add some more images
which show the objects in some defined poses and angles. Therefore images
which are made in the lab will be added to the database.

2.3 Ground Truth

To be able to use the dataset for supervised learning, labeled images are re-
quired. The positions of the objects of interest will be indicated by a bound-
ing box. This additional information will be stored in an extra file besides
the image. As a file format the java script object notation (json) [For14] will
be used, because a parser is already available in the codebase. This file con-
tains the type of the object, the upper left corner, the height and the width
of the bounding box. Figure 2.1 shows an example of such a json file.

The bounding box method is not sufficient for all object types. For ex-
ample the goal and the lines require a more precise labeling technique. For
those object types a binary pixel mask is created. Figure 2.2 shows a pair of
a line image and the pixel mask.

2.4 Database

The basis for the training set in this thesis is a collection of images, which
was provided by the Nao-Team HTWK Leipzig [Htw]. A few more images
were added from the HULKs Laboratory. This whole collection holds 13789
images of the upper camera, which were taken on four different occasions:

1. RoboCup Brazil 2014

2. Robot Hamburg Open Workshop (RoHOW) TUHH 2014

2.4 Database 8

Figure 2.2: An image of a line with the belonging pixel mask

3. Laboratory HTWK

4. Laboratory HULKs

To gather a disjoint training set, these images were categorized in a way
that only one object type can be seen. This results in a massive reduction in
the number of valid images, but might be required for some machine learn-
ing methods. Table 2.1 gives an overview about the numbers of images and
the number of extracted pixels for each object type.

Object Type Ball Field Robot Line Goal
Number of Images 336 16 256 81 14
Number of extracted pixel 1478306 4915200 7871712 1052023 21035

Table 2.1: Overview over the images in the database

Table 2.1 shows that the number of images and therefore also the num-
ber of extracted pixels are varying a lot between the different classes. This
might lead to a problem, because the prior probabilities of the classes are
not consistent with the detection error costs [Mal03]. For example is the
goal class much less represented than the field class. But the detection er-
ror for the field is not higher than the error for the goal class. Two different
methods will be used in this thesis to solve this problem. The first method
is over-sampling the data from the minority classes [LL98]. This can easily
implemented by using examples from the minority class multiple times. The
second method is under-sampling also called one-sided selection [KM97]. In
this method the minority class stays untouched and examples in the majority
classes will be removed until the classes are balanced.

2.5 K-fold Cross-Validation 9

Ball Field Robot Line Goal Total Partition
un-sampled 1.478 4.915 7.871 1.052 0.021 15.338 3.067
over-sampled 4.915 4.915 4.915 4.915 4.915 24.576 4.915
under-sampled 0.021 0.021 0.021 0.021 0.021 0.105 0.021

Table 2.2: The number of mega-pixels in each set for different sample mech-
anisms

2.5 K-fold Cross-Validation

To make an efficient use of the existing data set, the k-fold cross-validation
[RN02] method shall be applied for all further machine learning tasks. The
idea of k-fold cross-validation is, that the whole data set is partitioned in k
equally sized parts. For the training k−1

k parts will be used and 1
k parts will

be used for validation. This will be repeated k times. The classifier can than
be assessed by the average error on the validation set. The disadvantage
of this procedure is, that the already high computational complex learning
process must be executed multiple times. Therefore the k will be set to five in
this thesis. Table 2.2 shows the resulting set sizes for 5-fold cross-validation
applied on the proposed sampling methods introduced in section 2.4.

Chapter 3

Image Analysis

In this chapter images from the robot shall be analyzed, to determine fea-
tures, that could be used to classify objects, but first the color space, in
which the robot perceives its environment, shall be introduced.

3.1 Colorspace

Even though the colorspace, that is used on the nao, is YUV422 [Aldb], the
images are taken in the RGB colorspace. The images are converted per soft-
ware afterwards. The YCbCr [IR94] color space consists of three channels.
The following shows how they can be calculated from RGB:

Y-Channel
The Y-Channel represents the luminance. To calculate YCbCr from
RGB, the values have to be gamma adusted and normalized. The new
RGB triple will be denoted by R′, G′ and B′. The resulting luminance
value Y ′ can be calculated as follows:

Y ′ = 0.299 ·R′+0.587 ·G′+0.114 ·B′ (3.1)

Cb-Channel
The Cb channel describes the deviation of the chroma from blue to
yellow. Equation (3.2) shows how to obtain the Cb value from R′G′B′:

Cb = 128−0.168736 ·R′−0.331264G′+0.5B′ (3.2)

Cr-Channel
The Cr channel describes the deviation of the chroma from red to

10

3.2 Color Segmentation 11

0 128 255
0

128

255

Cb

C
r

CbCr-Plot for Y=0

0 128 255
0

128

255

Cb

C
r

CbCr-Plot for Y=128

0 128 255
0

128

255

Cb

C
r

CbCr-Plot for Y=255

Figure 3.1: Comparison of the CbCr plane for different Y values

green. Equation (3.3) shows how the Cr value can be calculated from
R′G′B′:

Cr = 128+0.5 ·R′−0.418688G′−0.081312B′ (3.3)

3.2 Color Segmentation

Figure 3.2 shows four images, that were taken by robots on different occa-
sions. Because of the color coded environment, it is possible to classify each
object based on the color. The challenge is, that every color can be perceived
very differently by a robot. This is caused by different lighting conditions or
e.g. different carpets. This section shall evaluate the five object classes and
the representing pixels.

3.2.1 Field Color

Figure 3.2 shows, that the most significant feature on almost all images is
the green field. Basically all objects, that should be detected, could be ex-
tracted by using all "non-green" regions. The following section shall show
how the green of the field could be separated from all other colors.
To determine how different the green values can get, the figure 3.3 shows
all the green pixels in one picture. Figure 3.4 shows the histogram of all
these pixels. A more detailed look an different carpets under different light-
ing conditions can be seen in Appendix 7.

3.2 Color Segmentation 12

(a) (b)

(c) (d)

Figure 3.2: (a) The field is framed by a yellow wall. (b) The green as a blueish
tone. (c) A lot of people watching the game from behind the goal. (d) A white
fence separates the audience and the field.

One notable thing in the histogram 3.4 is, that the highest peaks in the
Cb and the Cr channel are both at 128. This results from pixels, that are
very low illuminated. Due to (3.2) and (3.3) the Cb and Cr values converge
against 128 for low RGB values. When the Cb and Cr values are near 128
the color becomes quite indistinguishable (as can be seen in Figure 3.1).

To get a better idea of the distribution and how the green color could be
distinguished from other colors, a three dimensional histogram plot in the
CbCr-plane and also the YCb- and YCr-plane is shown in figure 3.5.

3.2 Color Segmentation 13

Figure 3.3: All green pixels

3.2.2 Robot Color

For the analysis of the field color, it was possible to select those images, that
contain only green field. To obtain the pixels belonging to the robots, it is
necessary to crop robot images. In order to do so, the existing bounding
boxes are used. With them it is possible to cut the part with the robot out of
the image. This method has the disadvantage, that always a few field pixels
are classified as robot pixels. This label noise could lead to a lower prediction
performance of some classifiers [FK]. Figure 3.6 shows all the pixels, that
are classified as robot-pixels.

Figure 3.7 shows the three-channel histogram of 256 robot images and
figure 3.8 shows the pixel density plot of those images.

3.2 Color Segmentation 14

0 32 64 96 128 160 192 224 256
0
1
2
3

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0
2
4
6
8

·10−2

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Figure 3.4: YCbCr Histogram over 16 field images

(a) (b) (c)

Figure 3.5: Pixel density plots of the YCbCr colorspace. Figure (a) shows the
CbCr plane. The majority of the pixels are in the bottom left quarter. The
maximum is in the middle at the point (128,128). The reason for that can be
seen in the figures (b) and (c), which show the pixel density in the YCr- and
YCb-plane of the colorspace. If the Y-channel becomes low, the Cb and Cr
values shift through 128.

3.2 Color Segmentation 15

Figure 3.6: All robot pixels

3.2.3 Ball Color

To obtain the pixels from the ball, the same method as in section 3.2.2 is
used. All the ball pixels are shown in figure 3.9, the associated histogram in
figure 3.10 and the pixel density plot in figure 3.11.

3.2 Color Segmentation 16

0 32 64 96 128 160 192 224 256
0

0.5
1

1.5
·10−2

Y-Value

#
p
ix
e
l
[%

]
Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2

0.1

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0
2
4
6

·10−2

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Figure 3.7: YCbCr Histogram over 256 robot images

(a) (b) (c)

Figure 3.8: The pixel density shown in figure (a) is very centralized. Only a
few pixels are arranged around the center. Figure (b) shows that the robot-
color is mostly below 128. The Cb Values are distributed around 128 along
the Y axis.

3.2 Color Segmentation 17

Figure 3.9: All ball pixels

3.2.4 Line Color

All the used line color pixels can be seen in figure 3.12 and the resulting
histogram and pixel density plots can be seen in figure 3.13 and 3.14.

3.2 Color Segmentation 18

0 32 64 96 128 160 192 224 256
0
1
2
3

·10−2

Y-Value

#
p
ix
e
l
[%

]
Y-Histogram

0 32 64 96 128 160 192 224 256
0
2
4
6
8

·10−2

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0
2
4
6

·10−2

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Figure 3.10: YCbCr Histogram over 336 ball images

(a) (b) (c)

Figure 3.11: The distribution of the red ball pixels in figure (a) shows a very
individual pattern in comparison to the other and are almost all in the upper
left quadrant. Figure (b) shows two peaks at the same Y Value. The rest of
the pixels are arranged in some sort of "v-shape". The Cb value in figure (c)
seems to be proportional to the Y-channel.

3.2 Color Segmentation 19

Figure 3.12: All line pixels

3.2.5 Goal Color

The resulting histogram and pixel density plots can be seen in figure 3.16
and 3.17.

3.2 Color Segmentation 20

0 32 64 96 128 160 192 224 256
0
1
2

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2

0.1

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0
2
4
6

·10−2

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Figure 3.13: YCbCr Histogram over 81 line images

(a) (b) (c)

Figure 3.14: The linecolor is mainly white, therefore the majority of the pix-
els have an Cb and Cr values of 128 and the Y value is higher than in the
other classes. One thing, that is noticeable here, is ,that there are two sep-
arate accumulations. Therefore the images must be taken from at least two
fields with very different conditions. Figure 3.12 shows also two different
color classes. It appears to be, that the surrounding field color has a big
influence on how the linecolor is perceived.

3.2 Color Segmentation 21

Figure 3.15: All goal-pixels

0 32 64 96 128 160 192 224 256
0
2
4
6
8

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Figure 3.16: YCbCr Histogram over 14 goal images

3.2 Color Segmentation 22

(a) (b) (c)

Figure 3.17: The distribution of the goal-pixels is more concentrated as the
linecolor. One reason for that might be the small amount of images, that was
available. But nonetheless the center of the distribution of the goalcolor has
a lower Cb-value and the Cr-value is above 128. The figures (b) and (c) show
also a more concentrated distribution, which also might be the result of the
small data set

3.2.6 Conclusion

The sections above have shown that the five different pixel classes overlap
a lot. Figure 3.18 shows the boundaries of the five classes projected on the
three planes of the YCbCr space. It is obvious that those classes are not
linear separable. A classifier, that separates these classes, should therefore
be able to separate in a three dimensional space in non-linear way.

3.2 Color Segmentation 23

0 64 128 192 256
0

64

128

192

256

Cb

C
r

Boundary of all pixel classes in the CbCr plane

Ball
Field
Robot
Line
Goal

(a)

0 64 128 192 256
0

64

128

192

256

Cr

Y

Boundary of all pixel classes in the YCr plane

Ball
Field
Robot
Line
Goal

(b)

0 64 128 192 256
0

64

128

192

256

Cb

Y

Boundary of all pixel classes in the YCb plane

Ball
Field
Robot
Line
Goal

(c)

Figure 3.18: The Boundaries of each pixel class plotted in the three different
YCbCr planes. The two biggest classes are the the field and the robot class.
They are also very similar. The reason for that is probably the high label
noise in the robot training data. It should be noted that these plots take all
pixels into account and don’t consider the density of the given classes.

Chapter 4

Machine Learning

As stated above a non-linear classifier is needed. There exists a vast variety
of different machine learning methods, that are able to operate in a non-
linear manner. But to achieve a feasible performance on the robot, there are
a few more requirements, that the algorithm should meet:

Execution Time
The whole processing time is fixed by the frame rate, which is set to
30 FPS. Hence, there are only 1

30 seconds available for a whole cycle.
In this cycle the calculations for vision, motion and the AI have to be
performed. Therefore the execution time for the pixel classifier is a
very hard constraint and should be as low as possible.

Memory efficiency
The NAO robot provides 1 GB of RAM and a 8 GB SD-Card. This might
be enough for a lot of applications. But might be a limiting factor
when it comes to some learning methods, where the storing of a whole
database is necessary (e.g. instance based approaches like KNN).

The different machine learning approaches can be categorized by the
following two categories [RN02]:

Parameterized models
These models usually have a certain parameter set, which is deter-
mined in a learning phase. Once these parameters are fixed, the model
changes no more and can be deployed. Such classifiers are for exam-
ple:

1. Artificial Neural Networks

24

4.1 K-means Clustering 25

2. Polynomial Classifiers

3. Linear Regression

Parameter free models
Models without parameters are often also called instance based mod-
els. The main difference is, that they perform the classification based
on the examples, that they have stored in some way. One advantage is,
that some of those approaches are able to adapt to the current setting,
because they are always updating the database and are therefore able
to perform online-learning. Some examples for paramter free models
are:

1. K-Nearest Neighbor

2. K-Means Clustering

3. Support Vector Machines

The following section introduces different machine learning methods and
evaluates their applicability to the defined classification problem.

4.1 K-means Clustering

The following section is based on [Bis06].
The K-means clustering algorithm is capable of processing multidimensional
data and assigns each data point to a certain cluster. The total number of
clusters is denoted by K. The cluster centroids are denoted by µµµk, where
k = 1, ...,K. The D-dimensional vector µµµk, where D is the dimension of the
input, represents the cluster middle-point for the kth cluster. Each data point
is then assigned to the cluster with the smallest euclidean distance to the
corresponding middle-point.
In order to determine µµµk an objective function is set as:

J = ∑
N
n=1 ∑

K
k=1 rnk ‖ xn−µµµk ‖2 (4.1)

Where N is the number of data points, K is the number of clusters, xn is
the nth data point and rnk is a N-by-K binary indicator, that indicates to which
of the clusters the nth sample is assigned. To find rnk and µµµk that minimizes
J, the EM-Algorithm can be used. For the first iteration of the algorithm the
µµµk can be chosen arbitrarily. The EM-Algorithm then consists of two steps:

4.1 K-means Clustering 26

Expectation (E-Step)
In the E-step the rnk will be determined. Each data point will be as-
signed to it’s nearest cluster, in order to minimize the sum of squared
distances. Equation (4.2) expresses this assignment for every n= 1, ...,N.
During this step the µµµk is constant.

rnk =

{
1, if k =arg min j ‖ xn−µµµ j ‖2

0, otherwise
(4.2)

Maximization (M-Step) In this step the rnk will be constant and the the
expression (4.1) will be minimized with respect to µµµk. This can be done
by setting the partial derivative of J equal to zero:

dJ
dµµµk

= 2∑
N
n=1 rnk(xn−µµµk) = 0 (4.3)

Which can be solved to:

µµµk =
∑

N
n=1 rnkxn

∑
N
n=1 rnk

(4.4)

The denominator in equation (4.4) can be interpreted as the number
of data points, that are assigned to the cluster k and the nominator is
the addition of all the data points assigned to cluster k. Therefore it
expresses the average value for all points assigned to the cluster.

4.1.1 Identifying the Cluster

K-means clustering is an unsupervised learning algorithm. During the train-
ing process no expected output is fed into the system, therefore the cluster
middle points are adjusted only based on the minimization process. This re-
sults in the problem ,that after training, there are five different clusters, but
it is not known which cluster is for example representing the ball. Hence, it
is necessary to find a mapping from the training classes to the cluster.
At first each class will be encoded by an integer number: ball = 1, field = 2,
goal = 3, line = 4 and robot = 5. The given training set x, comes along with
a result vector ŷ , that is encoded in the described way. After the training
process, the K-means algorithm returns a set of five middle points and the
vector y, that describes how the training examples were classified. The ele-
ments in the vector y only describe to which cluster the example belongs. To

4.1 K-means Clustering 27

decide which cluster belongs to which pixel class, all M = 5! = 120 permuta-
tions of possible combinations must be evaluated. The variable αnm describes
an element wise "not-equal" function for each element of y and ŷ.

αnm

{
1, if yn− ŷn = 0, for permutation m

0, otherwise
(4.5)

Where m = 1, ...,M indicates which combination is currently used. The com-
bination that minimizes then equation (4.6) describes the best possible clas-
sifier.

arg minm ∑
N
n=1 αnm (4.6)

4.1.2 Loss Function

In order to evaluate the results of the k-means algorithm, a cost function,
that weighs missclassifications, has to be defined. For this, it is possible to
use equation (4.6) in a slightly modified way:

L = ∑
N
n=1 βn (4.7)

with βn defined as:

βn

{
1, if yn− ŷn = 0

0, otherwise
(4.8)

Hence all missclassification are rated as equally weighted. The error rate
can then be calculated with:

eT =
LT

NT
; eV =

LV

NV
(4.9)

Where LT and LV are the loss values from equation (4.7) and NT and NV
are the number of samples in the training and validation set.

4.1.3 Results

4.1.3.1 Unsampled Data Set

Table 4.1 shows the results for the unsampled data set. It shows the error
on the training set eT as well as the error on the validation set eV for all five
training iterations, that occur because of the 5-fold cross-validation.

4.1 K-means Clustering 28

k=1 k=2 k=3 k=4 k=5 Average
eT 0.560 0.453 0.560 0.468 0.560 0.520
eV 0.560 0.628 0.791 0.773 0.848 0.720

Table 4.1: The error rate for the K-means clustering algorithm for the un-
sampled training set

The cluster middle point coordinates for the best classifier are shown in
table 4.2.

Y Cb Cr
Ball 90.723 104.540 179.105
Field 63.999 125.563 123.706
Goal 116.629 123.478 115.868
Line 151.906 119.077 118.481
Robot 89.807 119.063 112.116

Table 4.2: The YCbCr coordinates for the best classifier for unsampled data

4.1 K-means Clustering 29

4.1.3.2 Under-Sampled Data Set

Table 4.3 shows the results for the under-sampled data set.

k=1 k=2 k=3 k=4 k=5 Average
eT 0.466 0.470 0.470 0.371 0.371 0.430
eV 0.938 0.478 0.893 0.667 0.774 0.750

Table 4.3: The error rate for the K-means clustering algorithm for the under-
sampled training set

The cluster middle point coordinates for the best classifier are shown in
table 4.4.

Y Cb Cr
Ball 97,839 118,967 112,169
Field 141,888 128,815 112,420
Goal 152,490 100,107 132,213
Line 64,984 123,588 124,808
Robot 91,879 103,195 181,536

Table 4.4: The YCbCr coordinates for the best classifier for under-sampled
data

4.1 K-means Clustering 30

4.1.3.3 Over-Sampled Data Set

Table 4.5 shows the results for the over-sampled data set.

k=1 k=2 k=3 k=4 k=5 Average
eT 0.370 0.371 0.372 0.372 0.470 0.391
eV 0.370 0.370 0.892 0.801 0.6844 0.624

Table 4.5: The error rate for the K-means clustering algorithm for the over-
sampled training set

The cluster middle point coordinates for the best classifier are shown in
table 4.6.

Y Cb Cr
Ball 91,432 103,371 181,308
Field 65,015 123,644 124,489
Goal 152,550 100,080 132,260
Line 142,361 128,700 112,454
Robot 98,233 119,098 112,219

Table 4.6: The YCbCr coordinates for the best classifier for over-sampled
data

4.1.4 Discussion

The best result was achieved by using the over-sampled data set. But with
an error rate of 62.4 % even this result is not usable for a reliable detec-
tion. In addition to that, the resulting cluster middle points for the different
classes are varying a lot between these five classifiers. What means, that it
is not possible for the algorithm to differentiate between the five classes and
it was only capable of minimizing the error regarding the squared sum of
distances. Figure 4.1 compares one of the resulting classifications with the
true classification.

4.2 Artifical Neural Network 31

(a) K-mean result

(b) Correct classification

Figure 4.1: Figure (a) shows the result of the K-means clustering algorithm
for the under-sampled data set. Figure (b) shows the correct classification
for this data set.

4.2 Artifical Neural Network

This section is based on [RN02].
Section 4.1 has shown, that a more sophisticated approach is needed, to
classify the data correctly. A solution to this problem might be artificial

4.2 Artifical Neural Network 32

1

2

3

4

5

(a)

1

2

3

4

5
6

(b)

Figure 4.2: Figure (a) shows a neural network with three input (1, 2 and 3)
and two output neurons (4 and 5). The network in figure (b) has an additional
hidden layer (neuron 4 and 5) and only one output neuron (6)

neural networks. Neural networks are inspired by the human brain, because
they are also built from small connected units, that built a network. These
units are called neurons. Figure 4.2 shows two different neural networks.

Within a neural network the neurons in a layer l are always connected
with all the neurons in layer l + 1. The current value, that is assigned to
the neuron i, is denoted by ai. The connections between the neurons are
weighted edges. The weight for the connection from neuron i to neuron j is
denoted by wi, j. Each node processes all the incoming values by summing
up the output values of the predecessor neurons multiplied with the weight
of the connection to that neuron (eq. (4.10)) . The model of a neuron can be
seen in figure 4.4.

in j =
n

∑
i=1

wi, jai (4.10)

The output value a j can then be calculated by applying the activation
function g(x).

a j = g(in j) = g(
n

∑
i=1

wi, jai) (4.11)

As activation function often the sigmoid function is used.

g(x) =
1

1+ e−x (4.12)

4.2 Artifical Neural Network 33

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

g
(x
)

Figure 4.3: A plot of the sigmoid function, which is used as the activation
function g(x)

The advantage of the sigmoid function over e.g. a simple threshold func-
tion is, that it is differentiable. Figure 4.3 shows a plot of a sigmoid function.

To calculate the output for a neural network, is basically done by setting
the input nodes to the input vector ain = x and then propagating the values
through all the nodes. By putting the weights between two layers in a matrix,
the whole net can be evaluated by simple matrix vector multiplications. To

w
i,k

w j,k
g(

n
∑

i=1
wi,kai)

ak

Figure 4.4: A mathematical representation of a neuron.

4.2 Artifical Neural Network 34

determine the output values for the netork in figure 4.2 (a), the weights can
be written as follows.

Win,out =

(
w1,4 w2,4 w3,4
w1,5 w2,5 w3,5

)
(4.13)

The output then can be calculated by.

aout = g(Win,outx) (4.14)

For the network 4.2 (b) the calculations are the same, except that the
output layer from (a) now becomes the hidden layer and an additional calcu-
lation must be done.

Win,hidden =

(
w1,4 w2,4 w3,4;
w1,5 w2,5 w3,5

)
;Whidden,out =

(
w4,6 w5,6

)
(4.15)

ahidden = g(Win,hiddenx) (4.16)

aout = g(Whidden,outahidden) (4.17)

4.2.1 Bias Neurons

All neural networks have an additional neuron in each layer, except for the
output layer. This neuron is called bias neuron. The difference to normal
neurons is, that bias neurons have no inputs and they always have a constant
output of b = 1. So they are only connected to each neuron in the subsequent
layer. These connections are like the regular connections and are weighted
in the same way. These bias neurons are capable of shifting the threshold
boundary of the activation function to the left or to the right according to
the sign of the weights. Figure 4.5 shows two neural networks with the bias
neurons.

4.2.2 Training

To determine all the weights for a neural network, the backpropagation algo-
rithm is used. At first a loss function has to be defined. The loss of a neural
network is the squared sum of distances between the output of the network
aout and the training data y.

4.2 Artifical Neural Network 35

1

2

3

4

5

b
(a)

1

2

3

4

5

b

6

b

(b)

Figure 4.5: The neural networks from figure 4.2 with bias neurons in the
input and hidden layer

L = |y−aout |2 =
nout

∑
k=1

(yk−ak)
2 (4.18)

Now that the error in the output layer is known it is possible to propagate
the error back through the previous layer, hence the name backpropagation.
Equation (4.19) shows how the new values for the weights to the output layer
have to be calculated.

w j,k = w j,k +α ·a j ·∆k (4.19)

where
∆k = Errk ·g′(ink) (4.20)

and Errk is the kth entry in the error vector y−aout ,ink is the input for the kth

neuron in the output layer and α is the learning rate, that defines how big
the step size is.

To update the weights in the hidden layer, the error in the output neu-
rons will be backpropagated through the node, but it is multiplied by the
same weight as in the forwardpropagation. The idea behind this, is that the
influence of one neuron to the overall error is proportional to the weight,
that is between the neuron and the output. The partial error for a hidden
neuron is defined by ∆ j.

4.2 Artifical Neural Network 36

0 5 10 15 20 25 30 35 40 45 50
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

number of nodes in hidden layer

e
xe
cu

ti
o
n
ti
m
e
[m

s/
k
p
ix
e
l]

Execution Time

Figure 4.6: Runtime of a neural network with one hidden layer

∆ j = g′(in j)∑
k

w j,k∆k (4.21)

Now the weights in the hidden layer can be updated with equation (4.22).

wi, j = wi, j +α ·ai ·∆ j (4.22)

4.2.3 Determining the Topology

There are two basic requirements, that the network has to meet. A short
execution time and a low error rate. The data has to be separated in a non-
linear way, therefore at least one hidden layer is necessary. Figure 4.6 shows
the execution time of a single layer network in dependency of the number of
neurons in the hidden layer.

The execution time for some networks with two hidden layer can be seen
in table 4.7

A very small network with two hidden layers would be feasible, although
a single layer network would be much more preferable.

4.2 Artifical Neural Network 37

First
Layer

Second
Layer

Average
Runtime [ms

kpixel]
First
Layer

Second
Layer

Average
Runtime [ms

kpixel]

3 3 5.445 20 15 9.475
5 3 3.822 20 20 11.062
10 3 6.181 30 20 10.927
10 5 6.735 30 30 16.013
10 10 6.109 40 40 11.477
15 10 6.109 50 50 25.22
15 15 5.978

Table 4.7: Execution times for a network with two hidden layer

4.2.3.1 Under-Sampled Data Set

Figure 4.7 shows the error rate of neural networks trained with the under-
sampled data set. The error rate converges slightly above 20%.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of hidden neurons

E
rr
o
r
R
a
te

Error Rate for under-sampled Data Set

Figure 4.7: The Mean squared Error for a neural network with one hidden
layer dependent on the number of neurons for the under-sampled data set.

4.2 Artifical Neural Network 38

0 2 4 6 8 10 12 14
0

5 ·10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of hidden neurons

E
rr
o
r
R
a
te

Error Rate for unsampled Data Set

Figure 4.8: The Mean squared Error for a neural network with one hidden
layer dependent on the number of neurons for the under-sampled data set.

4.2.3.2 Unsampled Data Set

The result for the unsampled data set can be seen in figure 4.8. The measure-
ment was only done for 14 hidden neurons, because the training effort was
getting too high. But it can be estimated, that the error rate will converge
slightly under 20%. This is, compared to the much higher training time, just
a small improvement.

4.2.3.3 Over-sampled Data Set

The available hardware was not able to handle the over-sampled data set.
But based on the results of the two other sets, it is not expected that this
data set achieves a lower error rate than 15%.

4.2.4 Discussion

The comparison of neural networks trained with the different data sets has
shown, that the error rate is nearly equal for the unsampled and under-
sampled set. Although the over-sampled data set could not be evaluated,
it is expected, that the error rate is similar too. The slightly better error

4.3 Support Vector Machines 39

rates for the bigger data sets come along with much higher hardware and
time requirements, which is not comparative. Therefore a smaller data set
with precisely picked examples should be preferred. A compromise between
the error rate and the execution time has been made. This might always be
dependent on the use case, but based on the runtime from figure 4.6 and the
error estimation, a neural network with one hidden layer and eight to ten
neurons seems like a good solution.
An interesting fact is, that even the network with 50 hidden neurons shows
no signs of overfitting. This might be the case, because the complexity with
only one hidden layer might not be enough to fit the complex data set.

4.3 Support Vector Machines

Another approach that shall be introduced in this thesis are support vector
machines. The following section is based upon [AL08].
The main idea of the support vector machine is, to find a maximized margin
between the two classes C1 and C2, that shall be separated. The margin is
described by a hyperplane, that lies in its middle. The margin is defined by
assigning the nearest examples of the training set to the plane the distance
1 or −1 respectively. The plane can be expressed with:

wT xt +w0 ≥+1, for rt =+1 (4.23)

wT xt +w0 ≤−1, for rt =−1 (4.24)

Where wT is the normal vector of the plane,xt and rt are from the training
set χ = [xt ,rt]. xt contains the examples and rt is either +1, if xt ∈C1, or −1,
if xt ∈C2. (4.23) and (4.24) can be combined to.

rt(wT xt +w0)≥+1 (4.25)

The figure 4.9 shows an example with two classes and the margin.

4.3 Support Vector Machines 40

Figure 4.9: The margin between the two classes is defined by the red hyper-
plane

The distance, that should be maximized, between xt and the hyperplane,
can be determined by

rt(wT xt +w0)

‖w ‖ . (4.26)

It can be seen that this term will be maximized when ‖ w ‖ is minimized.
Therefore the following minimization problem can be formulated:

min
1
2
‖w ‖2,subject to: rt(wT xt +w0)≥+1,∀t (4.27)

This Problem can be rewritten by using the lagrange multiplier α t .

Lp =
1
2
‖w ‖2 −

N

∑
t=1

α
t [rt(wT xt +w0)−1] (4.28)

Which is equal to

1
2
‖w ‖2 −

N

∑
t=1

α
trt(wT xt +w0)+∑

t
α

t . (4.29)

This is a convex quadratic optimization problem. It is possible to solve
the equivalent dual problem by using the Karush-Kuhn-Tucker conditions:

4.3 Support Vector Machines 41

∂Lp

∂w
= 0⇒w = ∑

t
α

trtxt (4.30)

and
∂Lp

∂w0
= 0⇒∑

t
α

trt = 0 (4.31)

The dual problem can be determined by combining equations (4.30) and
(4.31) with (4.29).

Ld =−1
2 ∑

t
∑
s

α
t
α

srtrs(xt)T xs +∑
t

α
t (4.32)

Which shall be maximized with subject to

∑
t

α
trt = 0,and α ≥ 0,∀t (4.33)

The main point with equation (4.33) is, that it only depends on the example
set and it can be solved by common optimization methods for quadratic prob-
lems. After solving this problem, most of the α t will be zero. All examples
with a non-zero α t are the support vectors. With equation (4.30) it is possible
to determine the normal vector of the hyperplane w only using the support
vectors. The bias w0 can be calculated by

w0 = rt−wT xt (4.34)

To classify a new example, the decision function g(x) can be defined.

g(x) = wT xt +w0 (4.35)

The classification then works as follows:

x ∈
{

C1, if g(x)> 0

C2, otherwise
(4.36)

4.3.1 The Kernel Trick

One problem of support vector machines is, that the above described clas-
sifier can only be applied to linear separable data. Often it is required to
classify non-linear data. To achieve that, it is possible to project the ex-
amples in a feature space, where the data becomes linear separable. This
feature space has often a higher dimension than the original space. For this

4.3 Support Vector Machines 42

projection it is convenient, that the whole classification only depends on the
scalar product wT xt . The projection in the feature space is described by φ(x).
The classifier can then be modified.

g(x) = wT
φ(x) (4.37)

Using the dual problem leads to

w = ∑
t

α
trt

φ(x). (4.38)

Substituting w in (4.37) with (4.38) leads to the new g(x).

g(x) = ∑
t

α
trt

φ(xt)T
φ(x). (4.39)

In [CV95] the idea of using kernel functions is introduced. A kernel function
K(xt ,x) is meant to substitute the scalar product φ(xt)T φ(x). The advantage
of such a kernel is, that it is no longer necessary to project into the feature
space, because the kernel function represents the scalar product in the fea-
ture space, while it only requires the input vectors from the original space.
This feature is called the "kernel trick". Some common used kernel functions
are:

Linear :

K(xt ,x) = xT xt (4.40)

Polynomial :

K(xt ,x) = (xT xt +1)q (4.41)

Radial Basis Function:

K(xt ,x) = exp[−‖ xt−x ‖2

σ2] (4.42)

The decision function with the added kernel trick can then be written
like.

g(x) = ∑
t

α
trtK(xt ,x). (4.43)

4.3 Support Vector Machines 43

4.3.2 Multiple Classes

A support vector machine by itself is only capable of distinguishing between
two classes. Often the data sets have a higher number of classes K > 2.
For this case two simple methods exist to add multi-class support to support
vector machines [Bis06].

One-versus-rest
The idea of the one-versus-rest method is, to train K different support
vector machines. Each of them is trained with one class as positive
examples and the remaining K − 1 classes as the negative examples.
Each x, that shall be classified, is then fed into each of the K support
vector machines. Therefore it is possible that a sample is assigned to
multiple classes. The disadvantage of this method is, that the training
data gets very imbalanced because of the splitting.

One-versus-one
The one-versus-one approach uses K(K−1)

2 different support vector ma-
chines of all combinations of the K classes. Each sample is classified
by all the SVMs and the end result is determined by a voting process.
This method doesn’t suffer from the imbalanced data set, but it causes
much higher computational effort for training and in execution.

4.3.3 Determining the parameter

In order to find a configuration, that meets the requirements best, at first the
runtimes for the different kernel functions are evaluated. The runtime also
depends on the number of support vectors, because for every classification
the decision function g(x) has to iterate through all examples with a α t > 0.
Table 4.8 shows the execution times for different configurations per 1000
pixel.

Table 4.9 shows the results for a support vector machine with a linear
kernel function trained with the under-sampled data set.

These results show, that the error rate is lower than the error rate of the
neural networks, but the number of support vectors is very high. This would
cause a very high runtime, especially because all of the five classifier has to
be executed after another. An estimate of the overall runtime with the data
from table 4.8 leads to a execution time of ca. 9604.37 ms. This violates the
real time constraint and is therefore not feasible for practice. Albeit that
a comparison of the performance of the different kernels shall be provided.

4.3 Support Vector Machines 44

Runtime
[ms/kpixel]

Linear Polynomial Radial Basis Function

10 SVs 1.098 2.831 15.154
50 SVs 5.326 13.615 76.169
100 SVs 10.663 26.812 149.738

Table 4.8: The runtime of support vector machines with three different ker-
nels for 10/50/100 support vectors

Ball Field Goal Line Robot
Error Rate 0.062 0.236 0.194 0.223 0.347
#SV 13707 30912 12614 31179 32845

Table 4.9: The results for a support vector machine with linear kernel func-
tion

To achieve a reduced number of support vectors the training will be further
sub-sampled to a total size of 1000 with 200 samples per class. The results
can be seen in table 4.10.

The best result achieved the linear kernel. Which is convenient, because
it causes the lowest runtime. The polynomial kernel produced very bad re-
sults. With q = 3 it wasn’t even possible to determine a hyperplane for the
field classifier. The result of the radial basis function seems not too bad,
but the number of support vectors show, that it needs almost all examples
to define the hyperplane. This means the classifier suffers from very high
overfitting.

4.3.4 Discussion

Figure 4.10 shows an image wich was classified by the support vector ma-
chines trained with the under-sampled data set from table 4.9. For this ex-
ample the missclassifications are tremendous. All classifiers, except for the
field detector, have nearly detected the same regions as true. The field de-
tector performed best and was able to distinguish the field from all other
objects. This is only one example and therefore not representative, but it
shows the one issue of the one-versus-rest method. The white pixels in the
combined image represent the case, in that a pixel is classified with multiple
classes. For this example this might be an extreme case, but also for better
working classifiers this still might occur. One way to solve this could be to

4.3 Support Vector Machines 45

Linear Ball Field Goal Line Robot
Error Rate 0,059 0,173 0,096 0,165 0,2
#SV 151 374 215 390 441

Polynomial (q=2) Ball Field Goal Line Robot
Error Rate 0,44 0,392 0,701 0,607 0,549
#SV 163 313 154 396 450

Polynomial (q=3) Ball Field Goal Line Robot
Error Rate 0,412 NaN 0,215 0,371 0,532
#SV 8 0 2 3 3

Radial Basis
Function

Ball Field Goal Line Robot

Error Rate 0,184 0,198 0,166 0,2 0,199
#SV 978 975 970 969 972

Table 4.10: Results for support vector machines with different kernel func-
tions

produce integral images [VJ01] for each object class from the binary images
provided by the support vector machines. Those integral images can be used
to perfom an efficient calculation of the number of pixels, that appear in a
certain area. With those numbers a simple majority vote could be used to
decide which class the pixel belongs to.

4.3 Support Vector Machines 46

(a) Original image

(b) Ball detection (c) Field detection

(d) Goal detection (e) Line detection

(f) Robot detection (g) Combined image

Figure 4.10: The results of the different SVMs

Chapter 5

Conclusion

Although the results of the actual classifiers were not satisfying, some things
could be achieved that might help the team in the future with further devel-
oping with machine learning. The first and most essential thing for machine
learning is creating a database with fully labeled training data. This database
contains ca. 700 images at the moment. Furthermore an infrastructure to
use machine learning was established. This includes a code base for the nao,
that provides configurable code for support vector machines and neural net-
works and a json converter that can be used to transfer trained models from
matlab to the robot. With this framework it should be possible to further
refine machine learning approaches for image processing.
The comparison of the three implemented algorithms has shown that k-
means is not applicable to the problem, because it is not able to separate
the given data set. The support vector machines had the lowest error rate,
although those were still very high, but due to the high execution times it
is not feasible. Additionally, due to the multiple classifications, the decision
problem must also be solved.
The most promising approach are artificial neural networks. Those had fea-
sible runtimes and the error rates were comparable to the support vector
machines.

47

Chapter 6

Outlook

This thesis has shown that the pixel based approach doesn’t provide satisfy-
ing results. An extension of that approach, that can easily be implemented,
could be to combine the color information with the pixel coordinates. This
increases the input dimension by two, but it shouldn’t have a big impact ei-
ther on the training or the execution time. The advantage would be, that
for example, lines and goals could be separated much better, because the
goal pixels will usually occur in higher regions of the image than the line
pixels. Also some missclassification due to objects outside of the field could
be avoided. An even better approach than combining pixels and positions
would be, to take also the patterns of the objects into account. This could
be done by convolutional neural networks [LB95] . Convolutional neural
networks are modified artificial neural networks that are able to learn filter
operations. The major drawback of convolutional neural networks is that it
has very high computational costs for training as well as for execution. Addi-
tionally the input for those networks must have a constant size. This means
that every object somehow has to be up- or down-scaled before it can be
fed into the network. This requires, that regions of interest are evaluated
beforehand. These two things alone would probably exceed the real-time
constraint already. Therefore a lot of work and effort has to be made to
make these approaches work on the robot.

48

Bibliography

[AL08] E. Alpaydın and S. Linke. Maschinelles Lernen. Oldenbourg, 2008.
ISBN: 9783486581140. URL: https://books.google.de/books?
id=zsShZ68qJ2AC.

[Alda] Aldebaran. NAO - Video Camera. URL: http://doc.aldebaran.
com/2-1/family/robots/video_robot.html.

[Aldb] Aldebaran. Nao Datasheet. URL: https://www.aldebaran.com/
sites/aldebaran/files/nao_datasheet.pdf.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006. ISBN: 0387310738.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”.
In: Machine Learning. 1995, pp. 273–297.

[FK] Benoît Frénay and Ata Kabán. A Comprehensive Introduction to
Label Noise.

[For14] Internet Engineering Task Force. The JavaScript Object Notation
(JSON) Data Interchange Format. RFC 7159. IETF, 2014.

[Htw] HTWK NAO SPL Team. URL: http://robocup.imn.htwk-leipzig.
de/.

[IR94] ITU-R. Encoding Parameters Of Digital Television For Studios.
Tech. rep. BT.601-4. ITU-R, 1994.

[KM97] Miroslav Kubat and Stan Matwin. “Addressing the Curse of Imbal-
anced Training Sets: One-Sided Selection”. In: In Proceedings of
the Fourteenth International Conference on Machine Learning.
Morgan Kaufmann, 1997, pp. 179–186.

[Kri] Hinton Krizhevsky Vinod. CIFAR 10/100 Dataset. URL: http://
www.cs.toronto.edu/~kriz/cifar.html.

49

https://books.google.de/books?id=zsShZ68qJ2AC
https://books.google.de/books?id=zsShZ68qJ2AC
http://doc.aldebaran.com/2-1/family/robots/video_robot.html
http://doc.aldebaran.com/2-1/family/robots/video_robot.html
https://www.aldebaran.com/sites/aldebaran/files/nao_datasheet.pdf
https://www.aldebaran.com/sites/aldebaran/files/nao_datasheet.pdf
http://robocup.imn.htwk-leipzig.de/
http://robocup.imn.htwk-leipzig.de/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

Bibliography 50

[LB95] Yann LeCun and Yoshua Bengio. “Convolutional networks for im-
ages, speech, and time series”. In: The handbook of brain theory
and neural networks 3361.10 (1995).

[LL98] Charles X Ling and Chenghui Li. “Data Mining for Direct Mar-
keting: Problems and Solutions.” In: KDD. Vol. 98. 1998, pp. 73–
79.

[Mal03] Marcus A Maloof. “Learning when data sets are imbalanced and
when costs are unequal and unknown”. In: ICML-2003 workshop
on learning from imbalanced data sets II. Vol. 2. 2003, pp. 2–1.

[Mni] The MNIST Database of handwritten digits. URL: http://yann.
lecun.com/exdb/mnist/.

[RN02] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Mod-
ern Approach (2nd Edition). Prentice Hall, 2002. ISBN: 0137903952.
URL: http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20\&path=ASIN/0137903952.

[VJ01] Paul Viola and Michael Jones. “Rapid object detection using a
boosted cascade of simple features”. In: Computer Vision and
Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on. Vol. 1. IEEE. 2001, pp. I–
511.

[WFH11] Ian H. Witten, Eibe Frank, and Mark A. Hall. “Chapter 1 - What’s
It All About?” In: Data Mining: Practical Machine Learning Tools
and Techniques (Third Edition). Ed. by Ian H. WittenEibe FrankMark
A. Hall. Third Edition. The Morgan Kaufmann Series in Data Man-
agement Systems. Boston: Morgan Kaufmann, 2011, pp. 3 –38.
ISBN: 978-0-12-374856-0. DOI: http://dx.doi.org/10.1016/
B978-0-12-374856-0.00001-8. URL: http://www.sciencedirect.
com/science/article/pii/B9780123748560000018.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0137903952
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0137903952
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-374856-0.00001-8
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-374856-0.00001-8
http://www.sciencedirect.com/science/article/pii/B9780123748560000018
http://www.sciencedirect.com/science/article/pii/B9780123748560000018

Chapter 7

Appendix A

51

Chapter 7: Appendix A 52

Figure 7.1: Different Carpets with high illumination

(a)
0 32 64 96 128 160 192 224 256

0
1
2

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

0.15

Cb-Value

#
p
ix
e
l
[%

]
Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1

0.2

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

(b)
0 32 64 96 128 160 192 224 256

0
1
2

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

0.15
0.2

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1

0.2

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

(c)
0 32 64 96 128 160 192 224 256

0
2
4

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

0.15

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2
0.3

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Chapter 7: Appendix A 53

(d)
0 32 64 96 128 160 192 224 256

0
0.5

1
1.5

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

0.15

Cb-Value

#
p
ix
e
l
[%

]
Cb-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

0.15

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

(e)
0 32 64 96 128 160 192 224 256

0
0.5

1
1.5

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2
0.3

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

0.15

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

(f)
0 32 64 96 128 160 192 224 256

0

1

2
·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2

0.1

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Chapter 7: Appendix A 54

Figure 7.2: Different Carpets with normal illumination

(a)
0 32 64 96 128 160 192 224 256

0
2
4
6

·10−2

Y-Value
#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

0.2
0.4

Cb-Value

#
p
ix
e
l
[%

]
Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2
0.3

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

(b)
0 32 64 96 128 160 192 224 256

0
2
4
6

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

0.2
0.4

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2
0.3

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

(c)
0 32 64 96 128 160 192 224 256

0
2
4
6

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

0.2
0.4

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2
0.3

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Chapter 7: Appendix A 55

(d)
0 32 64 96 128 160 192 224 256

0
2
4

·10−2

Y-Value
#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

0.2

0.4

Cb-Value

#
p
ix
e
l
[%

]
Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

(e)
0 32 64 96 128 160 192 224 256

0
1
2
3

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2
0.3

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

(f)
0 32 64 96 128 160 192 224 256

0
2
4

·10−2

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

0.1
0.2

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

5 ·10−2
0.1

0.15

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

Chapter 7: Appendix A 56

Figure 7.3: Carpet with low illumination

(a)
0 32 64 96 128 160 192 224 256

0
0.1
0.2
0.3

Y-Value

#
p
ix
e
l
[%

]

Y-Histogram

0 32 64 96 128 160 192 224 256
0

0.5

1

Cb-Value

#
p
ix
e
l
[%

]

Cb-Histogram

0 32 64 96 128 160 192 224 256
0

0.5

1

Cr-Value

#
p
ix
e
l
[%

]

Cr-Histogram

	List of Figures
	List of Tables
	Introduction
	The NAO
	RoboCup
	Motivation
	Aim of this Thesis

	The Data
	Requirements
	The Set Size
	Ground Truth
	Database
	K-fold Cross-Validation

	Image Analysis
	Colorspace
	Color Segmentation
	Field Color
	Robot Color
	Ball Color
	Line Color
	Goal Color
	Conclusion

	Machine Learning
	K-means Clustering
	Identifying the Cluster
	Loss Function
	Results
	Discussion

	Artifical Neural Network
	Bias Neurons
	Training
	Determining the Topology
	Discussion

	Support Vector Machines
	The Kernel Trick
	Multiple Classes
	Determining the parameter
	Discussion

	Conclusion
	Outlook
	Appendix A

